Using planarians and single cell transcriptomics to study cell type evolution

利用涡虫和单细胞转录组学研究细胞类型进化

基本信息

  • 批准号:
    BB/V014447/1
  • 负责人:
  • 金额:
    $ 84.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Animals and other multicellular organisms are made of cells that can be classified into different "cell types". Often cell types are deeply conserved in evolution: for instance, all bilaterian animals seem to have muscle cells. These seem to have evolved from a cell type present in their last common ancestor. This is supported by the resemblance between their structural components but also their common gene regulation. Not only muscle, but also neurons, epidermis and other cell types seem to be conserved in most animals.However, we also know that there are cell types in some groups with no obvious equivalent in others. For instance, homologues of vertebrate immune cells (e.g. B cells or T cells) are difficult to identify in non-vertebrate types. How did this diversity of cell types emerge across evolution? Do all animals have the same cell types? Alternatively, do new cell types arise frequently in evolution? Do cell types vary only across phyla, or also within the same phylum?Several models of cell type evolution have been proposed. For instance, cell types could arise due to duplication of an original cell type. Then, one of the duplicated types specialises in a different function, while the other keeps the original function. A described example of this are a type of electroreceptor cells in fish that has diversified from hair cells. Other authors propose that novel expression of a new group of genes can lead to the creation of novel cell types. For instance, cells could express some genes under stress to enable new functions, but then if this expression becomes independent of stress it gives rise to a new cell type. Ultimately, the mechanisms by which cell types evolve and new cell types emerge are largely unknown. This is primarily due to a lack of techniques to profile them. Cell types are typically identified by markers (protein or RNA), but these are unknown in many species. Thus, cell type comparisons have been extremely challenging. In recent years, however, a novel technique called single cell transcriptomics (scRNA-seq) has allowed us to study the gene expression profiles of cells, enabling their classification in cell types by unbiased mathematical approaches. Using scRNA-seq we can sequence individual mRNAs, for thousands of individual cells. This allows us to classify them in types, since they express different mRNAs. Single-cell transcriptomics has already been applied to a broad range of animals and will therefore revolutionise our understanding of cell type evolution.Even harnessing single-cell transcriptomics methods, comparing highly divergent species (i.e. from different animal groups) is challenging, due to the sheer phylogenetic distance that hinders the identification of genes that are equivalent across species. To begin to address the mystery of cell type evolution, I propose to compare closely related species. This is a promising way to first develop the computational comparison of cell types to then understand differences from species to species. We expect that they will share a large set of cell types, and this will allow us to fine tune the mathematical algorithms used for comparison. Planarians are an exceptional model to perform this research since they can constantly generate all adult cell types. Thus, here I propose to study by scRNA-seq a collection of planarian species, to then identify their shared cell types, as well as any lineage specific cell type, and analyse their differences by functional studies. We will then study the similarities and dissect the differences by inhibiting the genes that underlie them. This will light the way of studying cell type evolution in other animal groups and lead to an understanding of cell types, the building blocks of all multicellular organisms.
动物和其他多细胞生物是由可分为不同“细胞类型”的细胞组成的。细胞类型在进化过程中通常是非常保守的:例如,所有的双边动物似乎都有肌肉细胞。它们似乎是从它们最后一个共同祖先的细胞类型进化而来的。这是由它们的结构成分之间的相似性以及它们共同的基因调控所支持的。不仅是肌肉,在大多数动物身上,神经元、表皮和其他类型的细胞似乎都是保守的。然而,我们也知道,有些群体中的细胞类型在其他群体中没有明显的等同。例如,脊椎动物免疫细胞(如B细胞或T细胞)的同源物很难在非脊椎动物类型中识别。这种细胞类型的多样性是如何在进化过程中出现的?所有的动物都有相同的细胞类型吗?或者,新的细胞类型在进化中频繁出现吗?细胞类型是只在门之间不同,还是在同一门内也不同?人们提出了几种细胞类型进化的模型。例如,细胞类型可能由于原始细胞类型的复制而产生。然后,其中一个重复的类型专门用于不同的功能,而另一个保持原始功能。这方面的一个例子是鱼的一种电感受器细胞,它已经从毛细胞中分化出来。其他作者提出,一组新基因的新表达可能导致新细胞类型的产生。例如,细胞可以在压力下表达一些基因来实现新的功能,但如果这种表达独立于压力,就会产生一种新的细胞类型。最终,细胞类型进化和新细胞类型出现的机制在很大程度上是未知的。这主要是由于缺乏分析它们的技术。细胞类型通常是通过标记物(蛋白质或RNA)来识别的,但这些在许多物种中是未知的。因此,细胞类型比较是极具挑战性的。然而,近年来,一种称为单细胞转录组学(scRNA-seq)的新技术使我们能够研究细胞的基因表达谱,从而通过无偏数学方法对细胞类型进行分类。使用scRNA-seq,我们可以对数千个单个细胞的单个mrna进行测序。由于它们表达不同的mrna,因此我们可以对它们进行类型分类。单细胞转录组学已经广泛应用于动物,因此将彻底改变我们对细胞类型进化的理解。即使利用单细胞转录组学方法,比较高度分化的物种(即来自不同动物群体)也是具有挑战性的,因为纯粹的系统发育距离阻碍了识别跨物种相同的基因。为了揭开细胞类型进化的神秘面纱,我建议比较关系密切的物种。这是一种很有希望的方法,首先发展细胞类型的计算比较,然后了解物种之间的差异。我们预计它们将共享大量的细胞类型,这将允许我们微调用于比较的数学算法。涡虫是进行这项研究的一个特殊模型,因为它们可以不断地产生所有的成年细胞类型。因此,在这里,我建议通过scRNA-seq研究涡虫物种的集合,然后确定它们共有的细胞类型,以及任何谱系特定的细胞类型,并通过功能研究分析它们的差异。然后,我们将研究相似之处,并通过抑制它们背后的基因来剖析差异。这将照亮研究其他动物群体细胞类型进化的道路,并导致对细胞类型的理解,这是所有多细胞生物的基石。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-cell transcriptomics in planaria: new tools allow new insights into cellular and evolutionary features.
Allometry of cell types in planarians by single cell transcriptomics
  • DOI:
    10.1101/2023.11.01.565140
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elena Emili;Alberto Pérez-Posada;Marika Christodoulou;Jordi Solana
  • 通讯作者:
    Elena Emili;Alberto Pérez-Posada;Marika Christodoulou;Jordi Solana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordi Solana其他文献

The Hydractinia cell atlas reveals cellular and molecular principles of cnidarian coloniality
水螅细胞图谱揭示了刺胞动物群体形成的细胞和分子原理
  • DOI:
    10.1038/s41467-025-57168-z
  • 发表时间:
    2025-03-03
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    David A. Salamanca-Díaz;Helen R. Horkan;Helena García-Castro;Elena Emili;Miguel Salinas-Saavedra;Alberto Pérez-Posada;Maria Eleonora Rossi;Marta Álvarez-Presas;Rowan Mac Gabhann;Paula Hillenbrand;Febrimarsa;Camille Curantz;Paris K. Weavers;Yasmine Lund-Ricard;Tassilo Förg;Manuel H. Michaca;Steven M. Sanders;Nathan J. Kenny;Jordi Paps;Uri Frank;Jordi Solana
  • 通讯作者:
    Jordi Solana
RNA In Situ Hybridization on Planarian Paraffin Sections.
涡虫石蜡切片上的 RNA 原位杂交。
  • DOI:
    10.1007/978-1-4939-7802-1_13
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jordi Solana
  • 通讯作者:
    Jordi Solana

Jordi Solana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jordi Solana', 18)}}的其他基金

A single-cell multiomic approach in planarians to understand regeneration.
用于了解涡虫再生的单细胞多组学方法。
  • 批准号:
    MR/W017539/1
  • 财政年份:
    2022
  • 资助金额:
    $ 84.78万
  • 项目类别:
    Research Grant
Shaping a stem cell into dozens of cell types: A single-cell epigenetic roadmap of planarian stem cell differentiation
将干细胞塑造成数十种细胞类型:涡虫干细胞分化的单细胞表观遗传路线图
  • 批准号:
    MR/S007849/1
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
    Research Grant

相似国自然基金

横断山区淡水三肠目涡虫资源及分类学研究
  • 批准号:
    30670247
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
  • 批准号:
    10606234
  • 财政年份:
    2023
  • 资助金额:
    $ 84.78万
  • 项目类别:
Transposon control as a checkpoint during regeneration
转座子控制作为再生过程中的检查点
  • 批准号:
    10607420
  • 财政年份:
    2023
  • 资助金额:
    $ 84.78万
  • 项目类别:
Imaging spatial transcriptome at single cell resolution to study eye regeneration in old age
以单细胞分辨率对空间转录组进行成像以研究老年眼再生
  • 批准号:
    10785595
  • 财政年份:
    2023
  • 资助金额:
    $ 84.78万
  • 项目类别:
A single-cell multiomic approach in planarians to understand regeneration.
用于了解涡虫再生的单细胞多组学方法。
  • 批准号:
    MR/W017539/1
  • 财政年份:
    2022
  • 资助金额:
    $ 84.78万
  • 项目类别:
    Research Grant
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
  • 批准号:
    10650765
  • 财政年份:
    2021
  • 资助金额:
    $ 84.78万
  • 项目类别:
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
  • 批准号:
    10274717
  • 财政年份:
    2021
  • 资助金额:
    $ 84.78万
  • 项目类别:
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
  • 批准号:
    10458701
  • 财政年份:
    2021
  • 资助金额:
    $ 84.78万
  • 项目类别:
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
  • 批准号:
    10810081
  • 财政年份:
    2021
  • 资助金额:
    $ 84.78万
  • 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
  • 批准号:
    10264039
  • 财政年份:
    2020
  • 资助金额:
    $ 84.78万
  • 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
  • 批准号:
    10687835
  • 财政年份:
    2020
  • 资助金额:
    $ 84.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了