Viral jumping of genus and species barriers: engineering phage host range promiscuity for diverse bacteria

病毒跨越属和种障碍:针对不同细菌设计噬菌体宿主范围混杂性

基本信息

  • 批准号:
    BB/W000105/1
  • 负责人:
  • 金额:
    $ 17.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Summary (up to 4000 characters)All living organisms can be infected by viruses, including plants, animals and humans. It has been known for just over a century that bacteria are also susceptible to attack by viruses (called bacteriophages or phages). Phages tend to be very host-specific because they only infect their bacterial hosts. Phages are thought to be the most abundant biological entities on Earth; there are 10 times more bacterial viruses than bacteria on the planet. However, these viruses are obligate intracellular parasites (being utterly dependent on susceptible bacterial hosts for their propagation). Bacteria and their viral parasites have existed for millions of years and their relationship is a perpetual "arms race" - the bacteria evolve strategies to become phage-resistant but the phages can also evolve by mutation to get around the defences of the bacterial cells. The bacteria then evolve to resist the evolved phages, and so on - in perpetuity. This endless biological process is called co-evolution.Phages have to adsorb to their bacterial hosts before they can infect. Adsorption depends on two things: 1) the bacteria expose a specific cell surface structure that can be "recognised" by the phage, and 2) the viruses have tail structures that allow them to "lock on" to the bacterial surface receptors in a specific "lock and key" mechanism. Only then, the virus can inject its DNA into the bacterial prey. On injection, the viral DNA re-programmes the bacteria, forcing them to make many new virus particles inside the bacterial cells, which burst to release new viruses that then infect more bacteria. The specificity of the interaction between the virus tail components and the bacterial surface receptor is the first key requirement in the phage-host relationship and that will be exploited in this project. There are some interesting biological similarities between the phage-bacterium interaction and the situation operating between the human coronavirus and the surface receptor of human cells. In the coronavirus case, viral "spike" proteins bind to surface receptor components of human cells - and that interaction is essential for viral adsorption, penetration and eventual replication in human cells. In this study we will exploit a phage called a "viunalikevirus". The viunalikeviruses are killers of the bacteria that they infect, but we have shown that they also have the capacity to transfer genes between bacteria ("horizontal gene transfer") in a process called generalised transduction. The viunalikeviruses are very specific for their own particular bacterial host species. However, we believe that these particular viruses have the genetic capacity to replicate in a wide range of bacteria but are prevented from doing so simply because of the tight specificity of the virus tail-bacterial host receptor interaction. One aim of this project is to test that hypothesis robustly. We will transfer genes coding for the surface receptor of a viunalikevirus to a spectrum of bacterial hosts in this synthetic biology project. The ability of the virus to infect genetically engineered bacteria will be confirmed and then these engineered bacteria will be tested as donors and recipients for genetic transfer capacity driven by the phage. The organisms to be investigated in this study will include non-pathogenic bacteria related to the original viunalikevirus host but will also include other bacteria that can infect plants, animals and insects. Furthermore, we will expand our approach into testing of taxonomically unrelated bacteria, including bacteria of medical, agricultural, environmental and biotechnological significance. Our aim is to exploit this strategy to provide a facile, innovative generic route to virus-mediated manipulation of diverse bacteria - thereby providing exceptional general utility for exploitation in bacterial genetics and engineering.
摘要(最多4000字)所有生物体都可以被病毒感染,包括植物、动物和人类。世纪以来,人们已经知道细菌也容易受到病毒(称为噬菌体或噬菌体)的攻击。噬菌体往往是非常特定的宿主,因为它们只感染它们的细菌宿主。噬菌体被认为是地球上最丰富的生物实体;地球上的细菌病毒比细菌多10倍。然而,这些病毒是专性细胞内寄生虫(完全依赖于易感细菌宿主进行繁殖)。细菌和它们的病毒寄生虫已经存在了数百万年,它们之间的关系是一场永久的“军备竞赛”-细菌进化出抗噬菌体的策略,但寄生虫也可以通过突变来绕过细菌细胞的防御。然后,细菌进化以抵抗进化的细菌,等等-永远如此。这种无休止的生物过程被称为共同进化。噬菌体在感染之前必须吸附到它们的细菌宿主上。吸附取决于两件事:1)细菌暴露出可以被噬菌体“识别”的特定细胞表面结构,以及2)病毒具有尾部结构,允许它们以特定的“锁和钥匙”机制“锁定”细菌表面受体。只有这样,病毒才能将其DNA注入细菌猎物。在注射时,病毒DNA重新编程细菌,迫使它们在细菌细胞内产生许多新的病毒颗粒,这些病毒颗粒破裂释放出新的病毒,然后感染更多的细菌。病毒尾部组分与细菌表面受体之间相互作用的特异性是噬菌体-宿主关系中的第一个关键要求,将在本项目中进行开发。噬菌体与细菌的相互作用与人类冠状病毒与人类细胞表面受体之间的作用有一些有趣的生物学相似之处。在冠状病毒的情况下,病毒“刺突”蛋白与人类细胞的表面受体成分结合-这种相互作用对于病毒在人类细胞中的吸附,渗透和最终复制至关重要。在这项研究中,我们将利用一种称为“类病毒”的噬菌体。类病毒是它们感染的细菌的杀手,但我们已经证明它们也有能力在细菌之间转移基因(“水平基因转移”),这一过程称为广义转导。病毒样病毒对它们自己特定的细菌宿主物种非常特异。然而,我们相信这些特定的病毒具有在广泛的细菌中复制的遗传能力,但仅仅因为病毒尾部-细菌宿主受体相互作用的紧密特异性而被阻止这样做。这个项目的一个目的是有力地检验这一假设。在这个合成生物学项目中,我们将把编码类病毒表面受体的基因转移到一系列细菌宿主中。病毒感染基因工程细菌的能力将得到证实,然后这些工程细菌将作为供体和受体进行测试,以测试噬菌体驱动的基因转移能力。本研究中研究的生物体将包括与原始病毒样病毒宿主相关的非致病性细菌,但也包括可感染植物、动物和昆虫的其他细菌。此外,我们将扩大我们的方法,以测试分类无关的细菌,包括细菌的医疗,农业,环境和生物技术的重要性。我们的目标是利用这一策略,提供一个简单的,创新的通用途径,以病毒介导的操纵不同的细菌-从而提供特殊的一般效用,利用细菌遗传学和工程。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Refactored genetic codes enable bidirectional genetic isolation.
  • DOI:
    10.1126/science.add8943
  • 发表时间:
    2022-11-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zürcher JF;Robertson WE;Kappes T;Petris G;Elliott TS;Salmond GPC;Chin JW
  • 通讯作者:
    Chin JW
Locking in a synthetic genetic code.
锁定合成遗传密码。
  • DOI:
    10.1038/s41576-022-00555-9
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minton K
  • 通讯作者:
    Minton K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Salmond其他文献

George Salmond的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Salmond', 18)}}的其他基金

Functional prophage and lysogen engineering in Citrobacter enabling studies of virulence and other traits
柠檬酸杆菌的功能性原噬菌体和溶原工程可用于毒力和其他性状的研究
  • 批准号:
    BB/T006668/1
  • 财政年份:
    2020
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
Biosynthesis and mode of action of a new antifungal antibiotic produced by bacterial plant pathogens and rhizosphere bacteria
植物病原体和根际细菌产生的新型抗真菌抗生素的生物合成和作用方式
  • 批准号:
    BB/N008081/1
  • 财政年份:
    2016
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
The molecular microbiology and physics of bacterial flotation
细菌浮选的分子微生物学和物理学
  • 批准号:
    BB/K001833/1
  • 财政年份:
    2013
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
Bacterial toxin-antitoxin system functionality and bacteriophage abortive infection: structure function and biology
细菌毒素-抗毒素系统功能和噬菌体流产感染:结构功能和生物学
  • 批准号:
    BB/H002677/1
  • 财政年份:
    2010
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
A novel plant pathogenesis regulatory system in Erwinia: functional analysis of a new post-transcriptional input to bacterial quorum sensing control.
欧文氏菌的一种新型植物发病机制调节系统:细菌群体感应控制的新转录后输入的功能分析。
  • 批准号:
    BB/H013261/1
  • 财政年份:
    2010
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
Genetic suppression of the RNA regulator system controlling virulence and antibiotic biosynthesis in the phytopathogen Erwinia carotovora
控制植物病原体胡萝卜软腐欧文氏菌毒力和抗生素生物合成的 RNA 调节系统的基因抑制
  • 批准号:
    BB/F009666/1
  • 财政年份:
    2008
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
Exploitation of new bacteriophages for generic strain engineering methods and functional genomic analysis of diverse bacteria
利用新型噬菌体进行通用菌株工程方法和多种细菌的功能基因组分析
  • 批准号:
    BB/G000298/1
  • 财政年份:
    2008
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
Bacterial metabolic engineering: forced adaptive evolution of quorum sensing control of virulence and secondary metabolism by chemical selections
细菌代谢工程:群体感应的强制适应性进化通过化学选择控制毒力和次生代谢
  • 批准号:
    BB/E015581/1
  • 财政年份:
    2007
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
A versatile bioreactor/fermenter system for 'omics' research on diverse aspects of microbial physiology
多功能生物反应器/发酵罐系统,用于微生物生理学各个方面的“组学”研究
  • 批准号:
    BB/E01318X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant

相似海外基金

Antiviral restriction factors: Understanding determinants of host range and barriers to species-jumping in livestock viral disease
抗病毒限制因素:了解牲畜病毒性疾病宿主范围的决定因素和物种跳跃的障碍
  • 批准号:
    BB/X009084/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Research Grant
The Evolution and Functional Morphology of Ant Legs
蚂蚁腿的进化和功能形态
  • 批准号:
    22KJ3077
  • 财政年份:
    2023
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CRII: FRR: Latch-mediation as a Pathway for Control in Small, Fast Jumping Microrobots
CRII:FRR:闩锁中介作为小型、快速跳跃微型机器人的控制途径
  • 批准号:
    2153327
  • 财政年份:
    2022
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Standard Grant
Dissecting the functional role of LINE1 retrotransposon-mediated interferon signaling in myeloid leukemia
剖析 LINE1 逆转录转座子介导的干扰素信号在髓系白血病中的功能作用
  • 批准号:
    10670097
  • 财政年份:
    2022
  • 资助金额:
    $ 17.86万
  • 项目类别:
Dissecting the functional role of LINE1 retrotransposon-mediated interferon signaling in myeloid leukemia
剖析 LINE1 逆转录转座子介导的干扰素信号在髓系白血病中的功能作用
  • 批准号:
    10536349
  • 财政年份:
    2022
  • 资助金额:
    $ 17.86万
  • 项目类别:
The relationship between various jumping and running exercises suggests the most effective jumping "bounding" exercise.
各种跳跃和跑步练习之间的关系表明最有效的跳跃“弹跳”练习。
  • 批准号:
    22K11685
  • 财政年份:
    2022
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Jumping the Wall": Negotiated Resistance of Bodies and Borders by Queer Palestinians between the West Bank, East Jerusalem and Israel
“跳墙”:巴勒斯坦酷儿在约旦河西岸、东耶路撒冷和以色列之间对身体和边界的谈判抵抗
  • 批准号:
    2726797
  • 财政年份:
    2022
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Studentship
Understanding the tissue plasticity trade-off using aquatic and terrestrial jumping in fish
利用鱼类的水生和陆生跳跃了解组织可塑性权衡
  • 批准号:
    564218-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.86万
  • 项目类别:
    University Undergraduate Student Research Awards
Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
  • 批准号:
    10265910
  • 财政年份:
    2021
  • 资助金额:
    $ 17.86万
  • 项目类别:
Research Project 3
研究项目3
  • 批准号:
    10348702
  • 财政年份:
    2021
  • 资助金额:
    $ 17.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了