Temperature-Responsive Control of Splicing by RNA Methylation

RNA 甲基化对剪接的温度响应控制

基本信息

  • 批准号:
    BB/W007967/1
  • 负责人:
  • 金额:
    $ 80.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

One of the clearest biological examples of the impact of recent climate change has been the shift in the time at which plants flower. Plants control their time of flowering to ensure that they reproduce in favourable conditions and they use ambient temperature as an important cue for this control. Many UK species now flower earlier than they did fifty years ago and this has negative effects on ecology and agriculture. However, this aspect of flowering time control is poorly understood and raises the basic question: how do plants measure temperature?The control of plant development depends on the action of different genes encoded within the DNA of plant chromosomes. When genes are switched on, they are copied into a related molecule called RNA, which is translated into the protein coded by the gene. Importantly, the DNA and RNA copies differ in a number of respects. One crucial difference is that stretches of the DNA copy, called introns, must be precisely excised from the RNA copy to allow it to be correctly translated into protein. We, and others, found that excision of specific introns from genes involved in flowering time control is temperature-sensitive. To understand how the excision of introns is controlled by temperature, we screened mutant plants to find cases where temperature-responsive control of flowering did not work. We found one case where intron removal was not temperature-sensitive anymore. These plants had a disruption in a gene called FIONA, which had previously been found to affect flowering time by a group from South Korea (Fiona means flowering in Korean). The FIONA gene encodes an enzyme that chemically modifies RNA by adding a methyl group to parts of the RNA sequence. By sequencing all the RNA from plants where FIONA was not working, we found that they have a problem in excising specific introns, including introns known to be excised in a temperature-responsive manner.One of the famous features of DNA is that two strands form a double helix by base-pairing. RNA differs from DNA by having only a single strand, but it tends to try to base-pair with itself, making different shapes and structures in the process. FIONA binds to a specific RNA structure and the methyl group it adds influences whether base-pairs form. Importantly, RNA structures are sensitive to temperature - they are stabilised at lower temperature and melt at warmer temperatures. Such RNA thermometers control protein translation in bacteria and have recently been shown to do the same in plants. Our idea is that a completely novel type of RNA thermometer creates a temperature-sensitive intron RNA structure, modulated by FIONA, to control temperature-sensitive excision of introns in many plant genes.To test this idea, we will look carefully at RNA in the model plant, Arabidopsis. First, we will identify which RNAs in a plant cell, FIONA binds to. Then we will use a new sequencing technique called nanopore direct RNA sequencing to reveal the shapes of RNAs with introns at different temperatures, map the RNAs FIONA modifies with methyl groups and reveal how the intron excision changes at different temperatures when FIONA is not there. In this way, we will link where FIONA acts to what FIONA does. We will carefully design experiments to test how FIONA controls the excision of an intron from a gene that we know controls flowering time and expand this analysis to other genes that use FIONA to work at different temperatures. We will combine our global view of RNAs, with these detailed experiments to answer the fundamental question of what makes the excision of introns temperature sensitive. We hope to uncover new thermometers used by plants. This study will give us line of sight to how we might mitigate the impacts of climate change on plants, including crops. For example, we may be able to re-engineer the temperatures to which RNAs respond or use RNA thermometers to control other important processes like grain development.
最近气候变化影响的最明显的生物学例子之一是植物开花时间的变化。植物控制其开花时间,以确保它们在有利的条件下繁殖,它们使用环境温度作为这种控制的重要线索。许多英国物种现在比五十年前更早开花,这对生态和农业产生了负面影响。然而,人们对开花时间控制的这一方面了解甚少,并提出了一个基本问题:植物如何测量温度?植物发育的控制取决于植物染色体DNA中编码的不同基因的作用。当基因被打开时,它们被复制到一种称为RNA的相关分子中,RNA被翻译成由基因编码的蛋白质。重要的是,DNA和RNA拷贝在许多方面不同。一个关键的区别是,DNA拷贝的延伸,称为内含子,必须从RNA拷贝中精确切除,以使其正确翻译成蛋白质。我们和其他人发现,从开花时间控制基因中切除特定的内含子是温度敏感的。为了了解内含子的切除是如何受温度控制的,我们筛选了突变体植物,以发现温度响应控制开花不起作用的情况。我们发现了一个例子,其中内含子去除不再是温度敏感的。这些植物有一个名为FIONA的基因被破坏,韩国的一个研究小组此前发现该基因会影响开花时间(Fiona在韩语中的意思是开花)。FIONA基因编码一种酶,该酶通过在RNA序列的一部分上添加甲基来化学修饰RNA。通过对FIONA不起作用的植物的所有RNA进行测序,我们发现它们在切除特定内含子方面存在问题,包括已知以温度响应方式切除的内含子。DNA的一个著名特征是两条链通过碱基配对形成双螺旋。RNA与DNA的不同之处在于它只有一条单链,但它倾向于尝试与自己进行碱基配对,在这个过程中形成不同的形状和结构。FIONA与特定的RNA结构结合,它所添加的甲基会影响碱基对的形成。重要的是,RNA结构对温度敏感-它们在较低的温度下稳定,在较高的温度下融化。这种RNA温度计控制细菌中的蛋白质翻译,最近在植物中也显示出同样的作用。我们的想法是,一种全新的RNA温度计创造了一种温度敏感的内含子RNA结构,由FIONA调节,以控制许多植物基因中内含子的温度敏感切除。为了验证这一想法,我们将仔细观察模式植物拟南芥中的RNA。首先,我们将确定FIONA与植物细胞中的哪些RNA结合。然后,我们将使用一种新的测序技术,称为纳米孔直接RNA测序,以揭示在不同温度下具有内含子的RNA的形状,绘制FIONA用甲基修饰的RNA,并揭示当FIONA不存在时,内含子切除在不同温度下如何变化。通过这种方式,我们将FIONA的行为与FIONA的行为联系起来。我们将仔细设计实验,以测试FIONA如何控制内含子从一个我们知道控制开花时间的基因中切除,并将这种分析扩展到使用FIONA在不同温度下工作的其他基因。我们将联合收割机结合我们对RNA的整体看法,与这些详细的实验来回答是什么使内含子的切除对温度敏感的基本问题。我们希望发现植物使用的新温度计。这项研究将使我们看到如何减轻气候变化对植物(包括农作物)的影响。例如,我们可以重新设计RNA响应的温度,或者使用RNA温度计来控制其他重要过程,如谷物发育。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Davies其他文献

An everlasting pioneer: the story of Antirrhinum research
永恒的先驱:金鱼草研究的故事
  • DOI:
    10.1038/nrg1127
  • 发表时间:
    2003-08-01
  • 期刊:
  • 影响因子:
    52.000
  • 作者:
    Zsuzsanna Schwarz-Sommer;Brendan Davies;Andrew Hudson
  • 通讯作者:
    Andrew Hudson

Brendan Davies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Davies', 18)}}的其他基金

Conditional uORF-Dependent Translational Control of Plant Gene Expression
植物基因表达的条件性 uORF 依赖性翻译控制
  • 批准号:
    BB/T006072/1
  • 财政年份:
    2021
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
Finding the Balance: Repression of Plant Gene Expression
寻找平衡:植物基因表达的抑制
  • 批准号:
    BB/T001194/1
  • 财政年份:
    2020
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
13 ERA-CAPS FLOWPLAST
13 ERA-CAPS FLOWPLAST
  • 批准号:
    BB/M000338/1
  • 财政年份:
    2014
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
A New Conditional Gene Regulation System in Plants
植物中新的条件基因调控系统
  • 批准号:
    BB/L006170/1
  • 财政年份:
    2014
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
A Family of Transcriptional Co-repressors Controlling Multiple Processes in Plants
控制植物多个过程的转录辅阻遏物家族
  • 批准号:
    BB/H018190/1
  • 财政年份:
    2010
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
BLOOM-NET
布卢姆网
  • 批准号:
    BB/G024995/1
  • 财政年份:
    2009
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
A biological rationale for NMD in plants
植物中 NMD 的生物学原理
  • 批准号:
    BB/H00775X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
Cis-element conservation and divergence in plant reproductive development
植物生殖发育中的顺式元素保守和分化
  • 批准号:
    BB/E024769/1
  • 财政年份:
    2007
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
Nonsense mediated mRNA decay in plants
植物中无义介导的 mRNA 衰变
  • 批准号:
    BB/E001823/1
  • 财政年份:
    2006
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant

相似国自然基金

SL-responsive β-半乳糖苷酶AB47 影响灰霉菌致病性的机制研究
  • 批准号:
    2021JJ40059
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Temperature responsive shading solution for greenhouse climate control
用于温室气候控制的温度响应遮阳解决方案
  • 批准号:
    10053585
  • 财政年份:
    2023
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Collaborative R&D
Temperature Responsive Control of Splicing by RNA Methylation
RNA 甲基化对剪接的温度响应控制
  • 批准号:
    BB/W007673/1
  • 财政年份:
    2022
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grant
Functional control of thermo-responsive polymers with an upper critical solution temperature
具有上限临界溶液温度的热响应聚合物的功能控制
  • 批准号:
    16K14002
  • 财政年份:
    2016
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of temperature-responsive magnetic adsorbent -Control of pore entrance size and dispersion/aggregation state by temperature-
温度响应型磁性吸附剂的开发 -通过温度控制孔径和分散/聚集状态-
  • 批准号:
    15K06536
  • 财政年份:
    2015
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic field- and temperature- responsive smart hybrid materials with rheology control: interplay between magnetic nanoparticles and a physical gel network in AC, DC and AC+DC fields probed by high frequency SANS
具有流变控制的磁场和温度响应智能混合材料:高频 SANS 探测的交流、直流和交流直流场中磁性纳米粒子和物理凝胶网络之间的相互作用
  • 批准号:
    238047398
  • 财政年份:
    2013
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Priority Programmes
Synthesis of new temperature-responsive separation membrane -Control of permeable molecular size by temperature-
新型温度响应型分离膜的合成-通过温度控制渗透分子大小-
  • 批准号:
    24560916
  • 财政年份:
    2012
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Micro-fluidics control with temperature-responsive surface shape memory material
使用温度响应表面形状记忆材料进行微流体控制
  • 批准号:
    23651142
  • 财政年份:
    2011
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Control of surface properties of ultra thin temperature responsive hydrogel layer utilizing basal surface property and its application to cell sheet recovery
利用基础表面特性控制超薄温度响应水凝胶层的表面特性及其在细胞片层恢复中的应用
  • 批准号:
    19710097
  • 财政年份:
    2007
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Control of ionic transport vector using a temperature-responsive ionic gel membranes
使用温度响应离子凝胶膜控制离子传输载体
  • 批准号:
    11640583
  • 财政年份:
    1999
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of temperature-responsive biofilms for the precise and reversible control of engineered living biomaterials
温度响应生物膜的设计,用于工程活生物材料的精确和可逆控制
  • 批准号:
    520612620
  • 财政年份:
  • 资助金额:
    $ 80.1万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了