Nonsense mediated mRNA decay in plants

植物中无义介导的 mRNA 衰变

基本信息

  • 批准号:
    BB/E001823/1
  • 负责人:
  • 金额:
    $ 33.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Genes contain the information necessary to make the proteins that make cells and make them work. This information is carried from the points of storage (DNA) to the points at which it is used to make specific proteins by a molecule called messenger RNA (mRNA). Despite this information transfer being a relatively accurate process, mistakes are made. DNA rearranges, mutations accumulate and errors are made in interconverting the information. Some of these errors could fool the cell into making incorrect proteins, which will be truncated variants of the correct protein. Unfortunately, such aberrant proteins often have the ability to compete with the normal proteins and create havoc with the correct functioning of cellular processes. Truncated proteins are therefore potentially very dangerous for the organism and it would be an advantage to the cell to prevent them from being made. All eukaryotes have mechanisms to identify and destroy aberrant mRNAs which might encode truncated protein products. The mechanisms are known as nonsense-mediated mRNA decay (NMD) and this proposal seeks to understand NMD in plants. It is not a trivial task for a cell to recognise an mRNA which might encode an incorrect protein and how cells manage this feat is of great topical interest. In essence would like to understand how a plant distinguishes 'good' mRNA from 'bad' mRNA. It is important to study NMD in plants for three main reasons. Firstly, although NMD has been well studied in mammals, worms, flies and yeast, major differences in the mechanism of NMD have been discovered in these model organisms. For example, in mammals it appears that splicing (joining together bits of mRNA) is essential for NMD to recognise aberrant mRNA, because a protein complex (called the EJC) is added to the mRNA to mark the splice points and to provide fixed reference points for the NMD mechanism to screen for errors. As a result of this, the NMD mechanism appears not to work on mammalian mRNAs that are not spliced. However, most yeast (S. cereviseae) mRNAs are not spliced, so a splicing-dependent NMD system would be almost useless. Consequently, yeast uses a different method to identify aberrant mRNAs. Flies have both lots of spliced genes and EJC proteins, but NMD is independent of the EJC in flies. We have almost no idea about NMD in plants. Unlike in mammals, there is evidence that unspliced mRNAs trigger NMD in plants, showing that although other systems can provide a framework for examining NMD, we need to define the rules independently. There is no set of consensus rules that we can apply to plant NMD. Secondly, it is becoming increasingly obvious that the NMD mechanism does not solely exist to weed out bad mRNA. Research in mammals and yeast has shown that the NMD mechanism actually represents a global system of gene expression and that more than 10% of the genes in the cell are under the control of this mechanism. Once again we have no idea whether this will be true for plants or whether overlapping sets of genes will be found to be controlled by NMD in plants and other organisms. Finally, there is some evidence that in worms the NMD mechanism is linked to another important method to regulate gene expression, RNAi. RNAi can be used to downregulate gene expression in several model organisms, including plants. We have evidence that plants which are defective in the NMD process are also deficient in RNAi. We need to explore the link between these two methods of regulatione where the two processes intersect. It will also be very interesting to see what effect is observed following mutagenesis on plants lacking NMD. In such plants one might expect to see a host of phenotypic effects, resulting from the expression of truncated proteins, that would be suppressed in normal plants.
基因包含制造制造细胞并使其工作的蛋白质所需的信息。这种信息被称为信使RNA(信使RNA)的分子从储存点(DNA)携带到用来制造特定蛋白质的点。尽管这种信息传递是一个相对准确的过程,但也会犯错误。DNA重排,突变累积,在信息相互转换过程中出错。其中一些错误可能会欺骗细胞制造错误的蛋白质,这些蛋白质将是正确蛋白质的截断变体。不幸的是,这种异常蛋白质往往具有与正常蛋白质竞争的能力,并对细胞过程的正常功能造成严重破坏。因此,截短的蛋白质对生物体来说是潜在的非常危险的,防止它们被制造出来对细胞来说是一种优势。所有真核生物都有识别和破坏可能编码截短蛋白产物的异常mRNAs的机制。这种机制被称为无意义介导的信使核糖核酸衰变(NMD),这一提议试图了解植物中的NMD。对于细胞来说,识别可能编码错误蛋白质的信使核糖核酸并不是一项微不足道的任务,细胞如何实现这一壮举是人们非常感兴趣的话题。从本质上讲,我们想要了解植物如何区分“好”和“坏”的信使核糖核酸。研究植物中的NMD很重要,主要有三个原因。首先,虽然NMD在哺乳动物、蠕虫、苍蝇和酵母中已经得到了很好的研究,但在这些模式生物中发现了NMD机制的主要差异。例如,在哺乳动物中,似乎剪接(将几个片段的mRNA连接在一起)对于NMD识别异常的mRNA是必不可少的,因为一个蛋白质复合体(称为EJC)被添加到mRNA中来标记剪接点,并为NMD机制提供固定的参考点来筛选错误。因此,NMD机制似乎不适用于没有剪接的哺乳动物mRNA。然而,大多数酵母(S.cereviseae)的mRNAs不是剪接的,因此依赖剪接的NMD系统几乎是无用的。因此,酵母使用一种不同的方法来识别异常的mRNAs。果蝇同时具有大量的剪接基因和EJC蛋白,但NMD不依赖于果蝇的EJC。我们对植物中的NMD几乎一无所知。与哺乳动物不同,有证据表明未剪接的mRNA在植物中触发NMD,这表明尽管其他系统可以提供检查NMD的框架,但我们需要独立定义规则。没有一套共识规则可以适用于建立NMD。其次,越来越明显的是,NMD机制的存在不仅仅是为了淘汰不良的mRNA。在哺乳动物和酵母中的研究表明,NMD机制实际上代表了一个全球性的基因表达系统,细胞中超过10%的基因受到这一机制的控制。再说一次,我们不知道这是否适用于植物,或者是否会在植物和其他生物中发现重叠的基因集受NMD控制。最后,有一些证据表明,在蠕虫中,NMD机制与另一种调节基因表达的重要方法RNAi有关。RNAi可以用来下调包括植物在内的几种模式生物的基因表达。我们有证据表明,在NMD过程中有缺陷的植物也缺乏RNAi。我们需要探索这两种调控方法之间的联系,在这两个过程相交的地方。在缺乏NMD的植物上进行诱变后观察到什么影响也将是非常有趣的。在这类植物中,人们可能会看到一系列的表型效应,这些效应是由截短蛋白的表达导致的,而这些效应在正常植物中是被抑制的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution.
  • DOI:
    10.1038/s41598-017-16942-w
  • 发表时间:
    2017-11-30
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Causier B;Li Z;De Smet R;Lloyd JPB;Van de Peer Y;Davies B
  • 通讯作者:
    Davies B
The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens.
  • DOI:
    10.1093/nar/gky225
  • 发表时间:
    2018-06-20
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Lloyd JPB;Lang D;Zimmer AD;Causier B;Reski R;Davies B
  • 通讯作者:
    Davies B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Davies其他文献

An everlasting pioneer: the story of Antirrhinum research
永恒的先驱:金鱼草研究的故事
  • DOI:
    10.1038/nrg1127
  • 发表时间:
    2003-08-01
  • 期刊:
  • 影响因子:
    52.000
  • 作者:
    Zsuzsanna Schwarz-Sommer;Brendan Davies;Andrew Hudson
  • 通讯作者:
    Andrew Hudson

Brendan Davies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Davies', 18)}}的其他基金

Temperature-Responsive Control of Splicing by RNA Methylation
RNA 甲基化对剪接的温度响应控制
  • 批准号:
    BB/W007967/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
Conditional uORF-Dependent Translational Control of Plant Gene Expression
植物基因表达的条件性 uORF 依赖性翻译控制
  • 批准号:
    BB/T006072/1
  • 财政年份:
    2021
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
Finding the Balance: Repression of Plant Gene Expression
寻找平衡:植物基因表达的抑制
  • 批准号:
    BB/T001194/1
  • 财政年份:
    2020
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
13 ERA-CAPS FLOWPLAST
13 ERA-CAPS FLOWPLAST
  • 批准号:
    BB/M000338/1
  • 财政年份:
    2014
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
A New Conditional Gene Regulation System in Plants
植物中新的条件基因调控系统
  • 批准号:
    BB/L006170/1
  • 财政年份:
    2014
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
A Family of Transcriptional Co-repressors Controlling Multiple Processes in Plants
控制植物多个过程的转录辅阻遏物家族
  • 批准号:
    BB/H018190/1
  • 财政年份:
    2010
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
BLOOM-NET
布卢姆网
  • 批准号:
    BB/G024995/1
  • 财政年份:
    2009
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
A biological rationale for NMD in plants
植物中 NMD 的生物学原理
  • 批准号:
    BB/H00775X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant
Cis-element conservation and divergence in plant reproductive development
植物生殖发育中的顺式元素保守和分化
  • 批准号:
    BB/E024769/1
  • 财政年份:
    2007
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Research Grant

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于NLRP3/IL-1β信号探讨α7nAChR介导巨噬细胞—心肌细胞互作在Aβ诱导房颤心房重构中的作用及机制研究
  • 批准号:
    82300356
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Tom1L1在胞内体蛋白分选机制中功能的研究
  • 批准号:
    31171289
  • 批准年份:
    2011
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
溶酶体依赖性TRAF2降解的机制
  • 批准号:
    30971501
  • 批准年份:
    2009
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonsense-mediated mRNA decay and beyond
无义介导的 mRNA 衰减及其他
  • 批准号:
    10622727
  • 财政年份:
    2023
  • 资助金额:
    $ 33.04万
  • 项目类别:
Suppression of Dominant-Negative Transcripts Escaping from Nonsense-Mediated mRNA Decay
抑制从无义介导的 mRNA 衰变中逃脱的显性负转录本
  • 批准号:
    10707154
  • 财政年份:
    2022
  • 资助金额:
    $ 33.04万
  • 项目类别:
Quality and evolutionary control of RNA virus genome via nonsense mediated mRNA decay
通过无义介导的 mRNA 衰减对 RNA 病毒基因组进行质量和进化控制
  • 批准号:
    22K20759
  • 财政年份:
    2022
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Suppression of Dominant-Negative Transcripts Escaping from Nonsense-Mediated mRNA Decay
抑制从无义介导的 mRNA 衰变中逃脱的显性负转录本
  • 批准号:
    10509435
  • 财政年份:
    2022
  • 资助金额:
    $ 33.04万
  • 项目类别:
Recognition and degradation of mRNA by nonsense-mediated decay.
通过无义介导的衰变来识别和降解 mRNA。
  • 批准号:
    10458690
  • 财政年份:
    2021
  • 资助金额:
    $ 33.04万
  • 项目类别:
Recognition and degradation of mRNA by nonsense-mediated decay.
通过无义介导的衰变来识别和降解 mRNA。
  • 批准号:
    10279973
  • 财政年份:
    2021
  • 资助金额:
    $ 33.04万
  • 项目类别:
Recognition and degradation of mRNA by nonsense-mediated decay.
通过无义介导的衰变来识别和降解 mRNA。
  • 批准号:
    10629249
  • 财政年份:
    2021
  • 资助金额:
    $ 33.04万
  • 项目类别:
Interplay between coronaviruses and nonsense-mediated mRNA decay pathway
冠状病毒与无义介导的 mRNA 衰减途径之间的相互作用
  • 批准号:
    10358595
  • 财政年份:
    2020
  • 资助金额:
    $ 33.04万
  • 项目类别:
Interplay between coronaviruses and nonsense-mediated mRNA decay pathway
冠状病毒与无义介导的 mRNA 衰减途径之间的相互作用
  • 批准号:
    10614383
  • 财政年份:
    2020
  • 资助金额:
    $ 33.04万
  • 项目类别:
Antisense Oligonucleotides for Targeting Nonsense-mediated mRNA Decay in Frontotemporal Dementia
反义寡核苷酸用于靶向额颞叶痴呆中无义介导的 mRNA 衰减
  • 批准号:
    10621865
  • 财政年份:
    2019
  • 资助金额:
    $ 33.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了