Probabilistic Auditory Scene Analysis
概率听觉场景分析
基本信息
- 批准号:EP/G050821/1
- 负责人:
- 金额:$ 29.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Auditory environments are typically very complicated. For example, thecocktail party comprises many sources; the chinking of glasses; thechattering of the many guests; the sound of backgroundmusic. Nevertheless, our auditory system can make sense of such ascene; it can work out how many acoustic sources there are anddetermine the individual contributions to the scene fromeach. Remarkably, it can do this using the information from a singlemicrophone. A major goal of auditory neuroscience is to understandhow the auditory system achieves this feat.Broadly speaking, it is thought that there are three stages toauditory scene analysis. The first stage is well understoodphysiologically and that is to convert the incoming sound into atime-frequency representation. This reveals the local energy in afrequency band at a particular time. In the second stage,psychophysical evidence suggests that primitive grouping principlesare used to group local regions of spectral-temporal energy arisingfrom a common source. By using simple stimuli - like tones and noise -a long list of primitive grouping principles have been elucidated. Forexample, the principle of good continuation identifies smoothlyvarying features with a single source and abrupt changes as asignature of separate sources. In the final stage of auditory sceneanalysis, called schema-based grouping, higher level knowledge, likethe structure of music or speech, is used to bind the groups ofspectral-temporal energy into streams so that there is one stream foreach source.There are many outstanding questions with this framework. Oneimportant open question is the role that auditory cortex plays inauditory scene analysis as it is not well established. Anotherconcerns the generality and completeness of the established list ofprimitive grouping rules. For although the principles successfullycharacterise perception of simple sounds it is unclear how successfuland relevant the description is for natural sounds. This project aims to resolve these questions though modelling work,psychophysics experiments and neural recording experiments. The newidea is to view the primitive grouping principles as arising frominference in a latent variable model of auditory scenes. A latentvariable model is a description of how an auditory scene, like thatencountered at a coctail party, is composed of latent auditorysources, like the chinking glasses and chattering guests. It alsoincludes a description of the statistics of these sources, like thefact that the chinking glasses tend to be isolated, high frequencyevents whist the chattering rather more constant and lower infrequency. The idea is that the brain is trying to infer these latentsources using prior knowledge of their statistics. New tools ofprobabilistic inference can make these intuitions concrete.This new perspective, called probabilistic scene analysis, has twomain advantages; one practical and one theoretical. The practicaladvantage is that a statistical characterisation of sounds can be usedto produce stimuli with complicated, but controlled structure, for usein experiments. The theoretical benefit is that the list of primitivegrouping rules, and the manner in which they trade off, are nowderived from the statistics of sounds; Heuristic implementation is nolonger required. This enables us to predict the results of theexperiments. In particular, the psychophysics experiments are aimedat resolving both how auditory grouping operates in synthetic auditorytextures (e.g. rain, wind, water etc.) and whether this is consistentwith the probabilistic account. Furthermore, the neural recordingexperiments will investigate the role of auditory cortex in auditoryscene analysis, and the hypothesis that it is representing high levelstatistics of sounds like slowly varying modulatory components.
听觉环境通常非常复杂。例如,鸡尾酒会包括许多来源;眼镜的叮当声;众多客人的闲聊;背景音乐的声音。然而,我们的听觉系统可以理解这种上升现象。它可以计算出有多少个声源,并确定每个声源对场景的贡献。值得注意的是,它可以使用来自单个麦克风的信息来做到这一点。听觉神经科学的一个主要目标是了解听觉系统如何实现这一壮举。从广义上讲,听觉场景分析被认为分为三个阶段。第一阶段在生理学上很好理解,即将传入的声音转换为时频表示。这揭示了特定时间频带内的局部能量。在第二阶段,心理物理学证据表明,原始分组原则用于对来自共同源的谱时能量的局部区域进行分组。通过使用简单的刺激——比如音调和噪音——一长串原始分组原则已经被阐明。例如,良好连续性原则将单个源的平滑变化特征识别为单独源的特征,并将突变特征识别为单独源的特征。在听觉场景分析的最后阶段,称为基于图式的分组,使用更高层次的知识,如音乐或语音的结构,将频谱-时间能量组绑定成流,以便每个源都有一个流。这个框架存在许多悬而未决的问题。一个重要的悬而未决的问题是听觉皮层在听觉场景分析中所扮演的角色,因为它尚未得到很好的证实。另一个问题涉及已建立的原始分组规则列表的通用性和完整性。因为虽然这些原理成功地描述了简单声音的感知,但尚不清楚这种描述对于自然声音有多成功和相关。本项目旨在通过建模工作、心理物理学实验和神经记录实验来解决这些问题。新想法是将原始分组原则视为源自听觉场景潜变量模型的推理。潜在变量模型描述了听觉场景(如鸡尾酒会上遇到的场景)如何由潜在听觉源(如叮当作响的玻璃杯和喋喋不休的客人)组成。它还包括对这些来源的统计数据的描述,例如叮当声往往是孤立的、高频事件,而喋喋不休的事件则更加持续且频率较低。这个想法是,大脑试图利用统计数据的先验知识来推断这些潜在来源。新的概率推理工具可以使这些直觉具体化。这种称为概率场景分析的新视角有两个主要优点:一种是实践的,一种是理论的。实际优点是声音的统计特征可用于产生具有复杂但受控结构的刺激,以供实验使用。理论上的好处是,原始分组规则的列表以及它们权衡的方式现在是从声音的统计中得出的;不再需要启发式实施。这使我们能够预测实验结果。特别是,心理物理学实验旨在解决听觉分组在合成听觉纹理(例如雨、风、水等)中如何运作以及这是否与概率解释一致。此外,神经记录实验将研究听觉皮层在听觉场景分析中的作用,以及它代表声音的高水平统计数据(如缓慢变化的调制成分)的假设。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes
- DOI:10.17863/cam.15597
- 发表时间:2015-04
- 期刊:
- 影响因子:0
- 作者:A. G. Matthews;J. Hensman;Richard E. Turner;Zoubin Ghahramani
- 通讯作者:A. G. Matthews;J. Hensman;Richard E. Turner;Zoubin Ghahramani
Deep Gaussian Processes for Regression using Approximate Expectation Propagation
- DOI:10.17863/cam.21348
- 发表时间:2016-02
- 期刊:
- 影响因子:0
- 作者:T. Bui;D. Hernández-Lobato;José Miguel Hernández-Lobato;Yingzhen Li;Richard E. Turner
- 通讯作者:T. Bui;D. Hernández-Lobato;José Miguel Hernández-Lobato;Yingzhen Li;Richard E. Turner
Rebuilding the limit order book: sequential Bayesian inference on hidden states
- DOI:10.1080/14697688.2013.851402
- 发表时间:2013-11
- 期刊:
- 影响因子:1.3
- 作者:H. Christensen;Richard E. Turner;Simon I. Hill;S. Godsill
- 通讯作者:H. Christensen;Richard E. Turner;Simon I. Hill;S. Godsill
Neural Adaptive Sequential Monte Carlo
神经自适应序列蒙特卡罗
- DOI:10.48550/arxiv.1506.03338
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Gu S
- 通讯作者:Gu S
Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation
使用随机期望传播和概率反向传播训练深度高斯过程
- DOI:10.48550/arxiv.1511.03405
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Bui T
- 通讯作者:Bui T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Turner其他文献
Minority opinion: CT screening for lung cancer.
少数意见:肺癌CT筛查。
- DOI:
10.1097/01.rti.0000189989.65271.79 - 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
C. Henschke;J. Austin;Nathaniel Berlin;T. Bauer;S. Giunta;Fred Gannis;M. Kalafer;S. Kopel;Albert Miller;H. Pass;H. Roberts;R. Shah;D. Shaham;Michael John Smith;S. Sone;Richard Turner;D. Yankelevitz;J. Zulueta - 通讯作者:
J. Zulueta
Gastric cancer gets the run-around
胃癌被四处推诿。
- DOI:
10.1038/nm0502-449 - 发表时间:
2002-05-01 - 期刊:
- 影响因子:50.000
- 作者:
Richard Turner - 通讯作者:
Richard Turner
Call for papers—genetics
- DOI:
10.1016/s0140-6736(10)60451-5 - 发表时间:
2010-03 - 期刊:
- 影响因子:0
- 作者:
Richard Turner - 通讯作者:
Richard Turner
Chest trauma in Far North Queensland: alcohol management can make a difference
昆士兰远北地区的胸部创伤:酒精管理可以发挥作用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.5
- 作者:
S. Jennings;R. Whitaker;Richard Turner - 通讯作者:
Richard Turner
The New Zealand Reanalysis (NZRA)
新西兰再分析 (NZRA)
- DOI:
10.2307/27226715 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amir Pirooz;S. Moore;T. Carey;Richard Turner;Chun - 通讯作者:
Chun
Richard Turner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Turner', 18)}}的其他基金
Machine Learning for Tomorrow: Efficient, Flexible, Robust and Automated
面向未来的机器学习:高效、灵活、稳健和自动化
- 批准号:
EP/T005637/1 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别:
Research Grant
Nanoporous polymer particles and gels containing functionalized semi-rigid copolymer structures
含有官能化半刚性共聚物结构的纳米孔聚合物颗粒和凝胶
- 批准号:
1609379 - 财政年份:2016
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
Machine Learning for Hearing Aids: Intelligent Processing and Fitting
助听器机器学习:智能处理和验配
- 批准号:
EP/M026957/1 - 财政年份:2015
- 资助金额:
$ 29.57万 - 项目类别:
Research Grant
Unifying audio signal processing and machine learning: a fundamental framework for machine hearing
统一音频信号处理和机器学习:机器听力的基本框架
- 批准号:
EP/L000776/1 - 财政年份:2013
- 资助金额:
$ 29.57万 - 项目类别:
Research Grant
Sterically Congested and Stiffened Alternating Copolymers: Synthesis, Solution and Solid-State Properties
空间拥挤和硬化交替共聚物:合成、溶液和固态特性
- 批准号:
1206409 - 财政年份:2012
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
Precisely Functionalized Alternating Copolymers Based on Substituted Stilbene Monomers
基于取代二苯乙烯单体的精确官能化交替共聚物
- 批准号:
0905231 - 财政年份:2009
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
Improvement of Instruction in Marine Ecology
海洋生态学教学的改进
- 批准号:
7814013 - 财政年份:1978
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
相似海外基金
Functional spatial segregation in auditory scene analysis
听觉场景分析中的功能空间隔离
- 批准号:
10659664 - 财政年份:2023
- 资助金额:
$ 29.57万 - 项目类别:
Attention and Auditory Scene Analysis
注意力和听觉场景分析
- 批准号:
RGPIN-2021-02721 - 财政年份:2022
- 资助金额:
$ 29.57万 - 项目类别:
Discovery Grants Program - Individual
Excellence in Research: Incorporating Attention into Computational Auditory Scene Analysis Using Spectral Clustering with Focal Templates
卓越研究:使用带有焦点模板的谱聚类将注意力纳入计算听觉场景分析
- 批准号:
2100874 - 财政年份:2021
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
Attention and Auditory Scene Analysis
注意力和听觉场景分析
- 批准号:
RGPIN-2021-02721 - 财政年份:2021
- 资助金额:
$ 29.57万 - 项目类别:
Discovery Grants Program - Individual
Computational auditory scene analysis as causal inference
作为因果推理的计算听觉场景分析
- 批准号:
1921501 - 财政年份:2019
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
NCS-FO: Unraveling Cortical Circuits for Auditory Scene Analysis
NCS-FO:揭示听觉场景分析的皮层回路
- 批准号:
1835270 - 财政年份:2018
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
Auditory scene analysis and attentional focusing in speech perception under complex dynamic listening conditions in younger and older adults
年轻人和老年人复杂动态听力条件下言语感知的听觉场景分析和注意力聚焦
- 批准号:
398995238 - 财政年份:2018
- 资助金额:
$ 29.57万 - 项目类别:
Research Grants
The role of spatial processing in auditory scene analysis
空间处理在听觉场景分析中的作用
- 批准号:
376848 - 财政年份:2017
- 资助金额:
$ 29.57万 - 项目类别:
Fellowship Programs