Crystallisation in Confinement - A Biological Perspective

监禁中的结晶——生物学视角

基本信息

  • 批准号:
    EP/H005374/1
  • 负责人:
  • 金额:
    $ 244.7万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The organisation and function of biological systems is based on compartmentalisation, where processes occur within small volumes rather in bulk solution. A simple example of a biological compartment is a cell, which itself can contain many smaller compartments. It is becoming increasingly obvious that confining reactions in this way can dramatically affect the mechanisms and products of biological and chemical reactions by changing the way that molecules interact with each other and their environment.This project will focus on one very important category of biological processes - biomineralisation - which is the formation of mineral-based structures such as seashells, bones and teeth. There is considerable interest in understanding how Nature controls crystallisation to produce materials of this type. Although biominerals are produced under mild reaction conditions, they often exhibit properties which can not only equal but actually surpass those of engineering materials such as concrete. The research in this proposal will investigate how confinement affects crystallisation, and how Nature exploits this to produce such remarkable materials. To-date, research directed towards understanding how Nature controls the formation of minerals has concentrated on the role of organic macromolecules. Further, although biomineralisation invariably occurs within restricted volumes, experiments aiming to mimic these processes are typically carried out in bulk solution. While organic molecules are certainly important, it is very likely that confinement also has a significant affect on these crystallisation processes. Indeed, there are many biogenic crystallisation phenomena, such as the precipitation of calcium phosphate crystals in collagen fibres during bone formation, which cannot be adequately described in terms of crystallisation from bulk solution. Initial work will focus on the precipitation of calcium carbonate and calcium phosphate in small volumes. The research programme will then be extended to investigate the effect of confinement on the crystallisation of a range of other minerals. While it is clear that confinement over a wide range of length scales can strongly affect crystal nucleation and growth, with the exception of freezing phenomena, these effects are poorly understood and as yet unpredictable. The research conducted will lead to a greater understanding of crystallisation in restricted volumes, and will therefore enable us to use confinement to control crystallisation, and to profit from it in synthetic systems. Indeed, there are many technological applications which rely upon crystal growth within constrained volumes such as the fabrication of nano-materials including nanowires and nanotube arrays, general templating processes, drug delivery systems and implants. Crystallisation in confinement is also widespread in Nature, and in addition to biomineralisation processes, includes events such as weathering and frost heave - which occur with great cost to civil engineering the environment and technology. The proposed research is clearly of great relevance to both fundamental research and technology across many disciplines.
生物系统的组织和功能是基于区室化,其中过程发生在小体积内,而不是在大体积溶液中。生物区室的一个简单例子是细胞,它本身可以包含许多更小的区室。越来越明显的是,通过改变分子相互作用的方式以及分子与环境的相互作用,这种限制反应可以极大地影响生物和化学反应的机制和产物。本项目将集中研究生物过程中非常重要的一类--生物矿化--即贝壳、骨骼和牙齿等矿物结构的形成。有相当大的兴趣了解自然如何控制结晶生产这种类型的材料。虽然生物矿物是在温和的反应条件下产生的,但它们往往表现出不仅可以与混凝土等工程材料相当甚至超过混凝土等工程材料的性能。这项提案中的研究将调查限制如何影响结晶,以及大自然如何利用这一点来产生如此非凡的材料。到目前为止,旨在了解自然如何控制矿物形成的研究集中在有机大分子的作用上。此外,尽管生物矿化总是发生在有限的体积内,但旨在模拟这些过程的实验通常在本体溶液中进行。虽然有机分子当然很重要,但限制也很可能对这些结晶过程产生重大影响。事实上,有许多生物结晶现象,如骨形成过程中胶原纤维中磷酸钙晶体的沉淀,这不能用本体溶液的结晶来充分描述。初期工作将集中于小体积碳酸钙和磷酸钙的沉淀。然后,研究计划将扩展到调查约束对一系列其他矿物结晶的影响。虽然很明显,在很宽的长度尺度范围内的约束可以强烈影响晶体成核和生长,但除了冻结现象之外,这些影响知之甚少,而且还无法预测。所进行的研究将导致更好地理解限制体积中的结晶,因此将使我们能够使用限制来控制结晶,并在合成系统中从中获利。实际上,存在依赖于受限体积内的晶体生长的许多技术应用,诸如包括纳米线和纳米管阵列的纳米材料的制造、一般模板化工艺、药物递送系统和植入物。在自然界中,结晶也很普遍,除了生物矿化过程外,还包括风化和冻胀等事件,这些事件的发生给土木工程、环境和技术带来了巨大的成本。拟议的研究显然与许多学科的基础研究和技术都有很大的相关性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Think Positive: Phase Separation Enables a Positively Charged Additive to Induce Dramatic Changes in Calcium Carbonate Morphology
  • DOI:
    10.1002/adfm.201102385
  • 发表时间:
    2012-03-07
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Cantaert, Bram;Kim, Yi-Yeoun;Meldrum, Fiona C.
  • 通讯作者:
    Meldrum, Fiona C.
Combinatorial microfluidic droplet engineering for biomimetic material synthesis
用于仿生材料合成的组合微流体液滴工程
  • DOI:
    10.3929/ethz-b-000123142
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bawazer, Lukmaan A.
  • 通讯作者:
    Bawazer, Lukmaan A.
Effect of Nanoscale Confinement on the Crystallization of Potassium Ferrocyanide
  • DOI:
    10.1021/acs.cgd.6b00894
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Anduix-Canto, Clara;Kim, Yi-Yeoun;Christenson, Hugo K.
  • 通讯作者:
    Christenson, Hugo K.
Combinatorial microfluidic droplet engineering for biomimetic material synthesis.
  • DOI:
    10.1126/sciadv.1600567
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Bawazer LA;McNally CS;Empson CJ;Marchant WJ;Comyn TP;Niu X;Cho S;McPherson MJ;Binks BP;deMello A;Meldrum FC
  • 通讯作者:
    Meldrum FC
Enzymatically-controlled biomimetic synthesis of titania/protein hybrid thin films.
  • DOI:
    10.1039/c8tb00381e
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Bawazer;J. Ihli;M. Levenstein;L. Jeuken;F. Meldrum;D. G. McMillan
  • 通讯作者:
    L. Bawazer;J. Ihli;M. Levenstein;L. Jeuken;F. Meldrum;D. G. McMillan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fiona Meldrum其他文献

Fiona Meldrum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fiona Meldrum', 18)}}的其他基金

Flow-Xl: A New UK Facility for Analysis of Crystallisation in Flow Systems
Flow-Xl:英国新的流动系统结晶分析设施
  • 批准号:
    EP/T006331/1
  • 财政年份:
    2020
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
Crystallisation in the Real World: Delivering Control through Theory and Experiment
现实世界的结晶:通过理论和实验提供控制
  • 批准号:
    EP/R018820/1
  • 财政年份:
    2018
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
Doped-Up: Bio-Inspired Assembly of Single Crystal Nanocomposites
掺杂:单晶纳米复合材料的仿生组装
  • 批准号:
    EP/P005233/1
  • 财政年份:
    2017
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
NEW STRATEGIES FOR CONTROLLING CRYSTALLIZATION
控制结晶的新策略
  • 批准号:
    EP/N002423/1
  • 财政年份:
    2015
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
BIOMOLECULE-DIRECTED EVOLUTION OF INORGANIC NANOMATERIALS
无机纳米材料的生物分子定向进化
  • 批准号:
    EP/L015005/1
  • 财政年份:
    2014
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
Core Capability for Chemistry Research - Leeds
化学研究核心能力 - 利兹
  • 批准号:
    EP/K039202/1
  • 财政年份:
    2013
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
Materials World Network: Composite Single Crystals - From Structural Evolution to Mechanical Characterization
材料世界网络:复合单晶 - 从结构演化到机械表征
  • 批准号:
    EP/J018589/1
  • 财政年份:
    2012
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
BIO-INSPIRED APPROACHES TO FUNCTIONAL NANOSTRUCTURED MATERIALS
功能性纳米结构材料的仿生方法
  • 批准号:
    EP/K006304/1
  • 财政年份:
    2012
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
BIOMIMETIC SYNTHESIS OF CRYSTALLINE MATERIALS WITH COMPOSITE STRUCTURES
复合结构晶体材料的仿生合成
  • 批准号:
    EP/G00868X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
Biomimetic Routes to Crystals with Superior Mechanical Properties
具有卓越机械性能的晶体的仿生路线
  • 批准号:
    EP/E037364/2
  • 财政年份:
    2009
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Research Grant
Discovery of Self-Assembled Network Phases And Metallic Nanostructures Driven by Confinement
限制驱动的自组装网络相和金属纳米结构的发现
  • 批准号:
    2411155
  • 财政年份:
    2024
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Standard Grant
CAREER: Controlling Chain Conformation in Amorphous Polymers through Soft Nanoscale Confinement
职业:通过软纳米级限制控制非晶态聚合物的链构象
  • 批准号:
    2339425
  • 财政年份:
    2024
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Continuing Grant
Crowding and Confinement: Coupling of Bulk and Membrane Phase Separation in Giant Vesicles
拥挤和限制:巨囊泡中体相分离和膜相分离的耦合
  • 批准号:
    2342436
  • 财政年份:
    2024
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Standard Grant
CAREER: Understanding 2D confinement driven phase transitions of non-polar liquids
职业:了解非极性液体的二维约束驱动相变
  • 批准号:
    2238874
  • 财政年份:
    2023
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Continuing Grant
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
  • 批准号:
    2887053
  • 财政年份:
    2023
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Studentship
Functional Design of Nanofibers Based on the Synergetic Effects of Hydrogen/Deuterium Exchange and Polymer Chain Confinement
基于氢/氘交换和聚合物链限制协同效应的纳米纤维功能设计
  • 批准号:
    23H02022
  • 财政年份:
    2023
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Confinement Effects & Emergent Reactivity in Multifunctional Metal-Organic Framework (MOF)-Based Catalysts
职业:限制效应
  • 批准号:
    2240021
  • 财政年份:
    2023
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Continuing Grant
Development of measurement techniques for avalanching transport in magnetic confinement plasmas
磁约束等离子体雪崩输运测量技术的发展
  • 批准号:
    23K13084
  • 财政年份:
    2023
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of High-quality Diamond Capsule and Application to Direct-drive Inertial Confinement Fusion
高品质金刚石胶囊的研制及其在直驱惯性约束聚变中的应用
  • 批准号:
    22KJ2224
  • 财政年份:
    2023
  • 资助金额:
    $ 244.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了