Materials World Network: Composite Single Crystals - From Structural Evolution to Mechanical Characterization
材料世界网络:复合单晶 - 从结构演化到机械表征
基本信息
- 批准号:EP/J018589/1
- 负责人:
- 金额:$ 120.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The combination of synthetic materials science with design concepts adapted from Nature is a promising route to the development of new materials. Biominerals such as bones, teeth and seashells provide an ideal inspiration for this approach, as illustrated by Nature's ability to manipulate mechanically weak engineering materials such as calcium carbonate to produce hard skeletal materials that exhibit excellent fracture toughness and unique morphologies. One key feature of these composite materials, which is an essential feature of their superior mechanical properties, is their structures involve strong intercalation of organic molecules within the mineral host. Here organics can not only be located between crystalline units as for materials such as nacre, but also within single crystals, as found for example in sea urchin spines. Indeed, single crystal biominerals often occlude up to several weight per cent of macromolecules, which is perhaps surprising given that crystallization is traditionally considered to be a method for purifying solids. We will investigate the application of this biogenic strategy - the encapsulation of "inclusion materials" within single crystals - to create novel composite materials. Although the potential for synthesizing composite materials based on this approach is enormous, our lack of fundamental understanding means that progress in this field remains largely based on trial-and-error experiments. In this project, we have assembled an international team of researchers uniquely positioned to fill this gap, and by doing so we will develop a comprehensive understanding of 1) the mechanisms by which "inclusion materials" are occluded within a crystal lattice; 2) the internal micro- and nano-structure of the resulting single crystal composites; and 3) how the resulting structures ultimately dictate the mechanical properties of the resulting composite material. Our research strategy is based on a systematic study of the incorporation of a broad range of "inclusion" materials - ranging from molecules to microscopic polymer particles, and from compliant to stiff frameworks. We will design and synthesise bespoke molecules, particles and gels with appropriate chemical structures to promote intercalation, and in doing so develop the first truly unified understanding of how additives are occluded within crystals. It is also expected that novel syntheses of polymeric particles and gels will also result from this approach.Understanding the strategies by which biominerals form, and how their design leads to superior properties is clearly a complex, multidisciplinary problem, encompassing fields such as crystal growth, materials characterisation, polymer chemistry, and analysis of mechanical properties. This joint NSF-EPSRC research grant involves an international collaboration between a consortium of world-leading research groups based in the USA and the UK, who by working closely together seek to combine the multidisciplinary expertise of each team to address this complex scientific problem and hence enable the rational design of novel biomaterials. Our ultimate goal is to create for the first time a truly unified understanding of how additives - ranging from molecular, to polymeric, to particulate, to compliant and ultimately stiff frameworks - can be incorporated within single crystals, and to determine how this strategy can be applied to the design of new materials with specific mechanical properties. This integrated approach will provide a general methodology for synthesizing composite crystals, contribute to our understanding of the biological systems from which the inspiration came, and will ultimately provide the basis for synthesizing next-generation materials such as artificial bone and tough synthetic dental enamel.
将合成材料科学与源自自然的设计理念相结合,是开发新材料的一条很有前途的途径。生物矿物如骨骼、牙齿和贝壳为这种方法提供了理想的灵感,正如大自然能够操纵碳酸钙等机械性能较弱的工程材料来生产具有优异断裂韧性和独特形态的硬骨骼材料所说明的那样。这些复合材料的一个关键特征是它们的上级机械性能的基本特征,其结构涉及有机分子在矿物主体内的强插层。在这里,有机物不仅可以位于晶体单位之间,就像珍珠层这样的材料一样,而且还可以位于单晶体中,例如在海胆刺中发现的。实际上,单晶生物矿物常常包藏高达几个重量百分比的大分子,这可能是令人惊讶的,因为结晶传统上被认为是用于纯化固体的方法。我们将研究这种生物策略的应用-在单晶中封装“内含物材料”-以创造新的复合材料。尽管基于这种方法合成复合材料的潜力巨大,但我们缺乏基本了解意味着该领域的进展在很大程度上仍然基于试错实验。在这个项目中,我们已经组建了一个国际研究团队,以填补这一空白,并通过这样做,我们将发展一个全面的理解1)的机制,其中“夹杂物材料”被封闭在晶格; 2)内部的微观和纳米结构的单晶复合材料;以及3)所得结构最终如何决定所得复合材料的机械性能。我们的研究策略是基于对广泛的“内含物”材料的系统研究-从分子到微观聚合物颗粒,从柔顺到刚性框架。我们将设计和合成具有适当化学结构的定制分子,颗粒和凝胶,以促进插层,并在此过程中开发第一个真正统一的理解添加剂如何在晶体中被封闭。还可以预期的是,聚合物颗粒和凝胶的新型合成也将由此方法产生。理解生物矿物形成的策略以及它们的设计如何导致上级性能显然是一个复杂的多学科问题,包括晶体生长,材料表征,聚合物化学和机械性能分析等领域。这个联合NSF-EPSRC研究资助涉及一个由位于美国和英国的世界领先研究小组组成的财团之间的国际合作,他们通过密切合作,寻求联合收割机结合每个团队的多学科专业知识,以解决这个复杂的科学问题,从而实现新型生物材料的合理设计。我们的最终目标是第一次建立一个真正统一的理解添加剂-从分子,聚合物,颗粒,顺应性和最终刚性框架-可以纳入单晶,并确定如何将这种策略应用于设计具有特定机械性能的新材料。这种综合方法将为合成复合晶体提供一种通用方法,有助于我们理解灵感来自的生物系统,并最终为合成下一代材料(如人造骨和坚韧的合成牙釉质)提供基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite.
- DOI:10.1038/ncomms13524
- 发表时间:2016-11-18
- 期刊:
- 影响因子:16.6
- 作者:Green, David C.;Ihli, Johannes;Thornton, Paul D.;Holden, Mark A.;Marzec, Bartosz;Kim, Yi-Yeoun;Kulak, Alex N.;Levenstein, Mark A.;Tang, Chiu;Lynch, Christophe;Webb, Stephen E. D.;Tynan, Christopher J.;Meldrum, Fiona C.
- 通讯作者:Meldrum, Fiona C.
Rationally designed anionic diblock copolymer worm gels are useful model systems for calcite occlusion studies
- DOI:10.1039/c9py00889f
- 发表时间:2019-10-07
- 期刊:
- 影响因子:4.6
- 作者:Fielding, Lee A.;Hendley, Colt T.;Armes, Steven P.
- 通讯作者:Armes, Steven P.
Three-dimensional imaging of dislocation propagation during crystal growth and dissolution
晶体生长和溶解过程中位错传播的三维成像
- DOI:10.48550/arxiv.1501.02853
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Clark J
- 通讯作者:Clark J
Visible Mie Scattering from Hollow Silica Particles with Particulate Shells
- DOI:10.1021/cm4039347
- 发表时间:2014-01-28
- 期刊:
- 影响因子:8.6
- 作者:Fielding, Lee A.;Mykhaylyk, Oleksandr O.;Fowler, Patrick W.
- 通讯作者:Fowler, Patrick W.
Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles.
- DOI:10.1021/acs.macromol.6b00987
- 发表时间:2016-07-26
- 期刊:
- 影响因子:5.5
- 作者:Akpinar B;Fielding LA;Cunningham VJ;Ning Y;Mykhaylyk OO;Fowler PW;Armes SP
- 通讯作者:Armes SP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fiona Meldrum其他文献
Fiona Meldrum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fiona Meldrum', 18)}}的其他基金
Flow-Xl: A New UK Facility for Analysis of Crystallisation in Flow Systems
Flow-Xl:英国新的流动系统结晶分析设施
- 批准号:
EP/T006331/1 - 财政年份:2020
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
Crystallisation in the Real World: Delivering Control through Theory and Experiment
现实世界的结晶:通过理论和实验提供控制
- 批准号:
EP/R018820/1 - 财政年份:2018
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
Doped-Up: Bio-Inspired Assembly of Single Crystal Nanocomposites
掺杂:单晶纳米复合材料的仿生组装
- 批准号:
EP/P005233/1 - 财政年份:2017
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
NEW STRATEGIES FOR CONTROLLING CRYSTALLIZATION
控制结晶的新策略
- 批准号:
EP/N002423/1 - 财政年份:2015
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
BIOMOLECULE-DIRECTED EVOLUTION OF INORGANIC NANOMATERIALS
无机纳米材料的生物分子定向进化
- 批准号:
EP/L015005/1 - 财政年份:2014
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
Core Capability for Chemistry Research - Leeds
化学研究核心能力 - 利兹
- 批准号:
EP/K039202/1 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
BIO-INSPIRED APPROACHES TO FUNCTIONAL NANOSTRUCTURED MATERIALS
功能性纳米结构材料的仿生方法
- 批准号:
EP/K006304/1 - 财政年份:2012
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
Crystallisation in Confinement - A Biological Perspective
监禁中的结晶——生物学视角
- 批准号:
EP/H005374/1 - 财政年份:2010
- 资助金额:
$ 120.78万 - 项目类别:
Fellowship
BIOMIMETIC SYNTHESIS OF CRYSTALLINE MATERIALS WITH COMPOSITE STRUCTURES
复合结构晶体材料的仿生合成
- 批准号:
EP/G00868X/1 - 财政年份:2009
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
Biomimetic Routes to Crystals with Superior Mechanical Properties
具有卓越机械性能的晶体的仿生路线
- 批准号:
EP/E037364/2 - 财政年份:2009
- 资助金额:
$ 120.78万 - 项目类别:
Research Grant
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
- 批准号:
1711849 - 财政年份:2016
- 资助金额:
$ 120.78万 - 项目类别:
Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
- 批准号:
1313544 - 财政年份:2014
- 资助金额:
$ 120.78万 - 项目类别:
Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
- 批准号:
239013293 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
- 批准号:
240640164 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Research Grants
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
- 批准号:
1311849 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
- 批准号:
1312160 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
- 批准号:
1312421 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
- 批准号:
1312525 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
- 批准号:
1312697 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
- 批准号:
1312750 - 财政年份:2013
- 资助金额:
$ 120.78万 - 项目类别:
Standard Grant