Flow-Xl: A New UK Facility for Analysis of Crystallisation in Flow Systems
Flow-Xl:英国新的流动系统结晶分析设施
基本信息
- 批准号:EP/T006331/1
- 负责人:
- 金额:$ 143.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Crystalline materials are everywhere. They are abundant in nature (eg bones and seashells) and in the environment (eg. rocks and ice) and are found across a diverse selection of everyday products including pharmaceuticals, batteries and food. Crystallisation can also be undesirable, such as in the formation of kidney stones or scale in a kettle. The ability to control crystallisation processes - to generate particles with specific sizes, shapes and structures, and to control where and when crystallisation occurs - therefore promises huge benefits to society. Here, we need to develop strategies to prevent crystallisation. All of these goals can only be achieved by developing a robust understanding of the mechanisms that underlie crystal nucleation and growth.This project will create a new UK, and indeed world-first research facility - Flow-Xl - that can address this challenge. Flow-Xl will be located at the University of Leeds and will enable in situ, time-resolved characterisation of crystallisation processes in highly controlled environments. This will be achieved by coupling X-ray diffraction and Raman spectroscopy to a range of fully-integrated flow platforms. These analytical techniques will be used simultaneously to study crystallisation pathways from amorphous and poorly crystalline precursor materials, through crystalline intermediates, to the ultimate crystal products. This combined capability is not currently available anywhere else in the world. Flow-Xl is also extremely timely, where it is only possible because top-of-the-range laboratory X-ray instruments are now so good that they can replace synchrotrons for many experiments. Parallel innovative data processing and analysis methods will be developed and provided for Flow-Xl users, building on our key breakthrough methodology. These will allow the maximum information to be obtained from Flow-Xl experiments.The use of flow systems is also critical to our technique, and Flow-Xl will offer a number of contrasting flow platforms. The simplest of all is continuous flow, which mimics many industrial manufacturing processes. Many industrial crystallisation processes also take place in stirred vessels, and these environments will be studied by withdrawing solution from a batch reactor through a flow loop for analysis. Finally, it will be possible to study crystallisation in segmented flow, where individual droplets provide highly reproducible reaction environments that are ideally suited to fundamental studies of crystallisation mechanisms. Flow-Xl will also enable us to share our expertise in the manufacture of flow-cells for X-ray measurements with the entire UK research community. Flow-Xl will be operated as a multi-user facility that is open to all academic and industrial researchers across the UK, and will be supported by an experienced research officer. This will allow the equipment to be fully utilised for a wide range of projects spanning industrial processes through to developing fundamental understanding. In addition to providing a cutting-edge, stand-alone research facility, Flow-Xl will also support Diamond Light Source and its users by providing an alternative or precursor to synchrotron time for many experiments. This frees-up precious beam-time for experiments that really need it, and enables researchers to conduct screening/ feasibility experiments prior to their beam-time. The facility will support a range of existing projects including the formation of organic framework compounds, biomineralisation and bio-inspired crystallisation, fouling, materials discovery, production of single enantiomer crystals, polymorph selection and the development of artificial intelligence in modelling of crystallisation. By building a strong user community from academia and industry over the course of the project, we will ensure this powerful new facility finds application across a wide range of scientific programmes.
晶体物质无处不在。它们在自然界中(如骨头和贝壳)和环境中(如海洋)都很丰富。岩石和冰),并发现在各种日常产品,包括药品,电池和食品。结晶也可能是不希望的,例如在肾结石或锅中的水垢的形成中。因此,控制结晶过程的能力--产生具有特定尺寸、形状和结构的颗粒,以及控制结晶发生的地点和时间--有望为社会带来巨大利益。在这方面,我们需要制定防止结晶化的战略。所有这些目标只能通过对晶体成核和生长机制的深入了解来实现。该项目将创建一个新的英国,实际上是世界上第一个研究设施- Flow-Xl -可以应对这一挑战。Flow-Xl将位于利兹大学,并将在高度受控的环境中实现结晶过程的原位时间分辨表征。这将通过将X射线衍射和拉曼光谱耦合到一系列完全集成的流动平台来实现。这些分析技术将同时用于研究从无定形和结晶性差的前体材料,通过结晶中间体,最终晶体产品的结晶途径。这种综合能力目前在世界其他任何地方都不具备。Flow-Xl也非常及时,这是唯一可能的,因为顶级的实验室X射线仪器现在非常好,它们可以取代同步加速器进行许多实验。并行创新的数据处理和分析方法将开发并提供给Flow-Xl用户,建立在我们的关键突破方法的基础上。这些将允许从Flow-Xl实验中获得最大的信息。流动系统的使用对我们的技术也至关重要,Flow-Xl将提供许多对比流动平台。其中最简单的是连续流,它模仿了许多工业制造过程。许多工业结晶过程也在搅拌容器中进行,这些环境将通过从间歇反应器中通过流动回路抽取溶液进行分析来研究。最后,将有可能研究分段流中的结晶,其中单个液滴提供高度可重复的反应环境,非常适合结晶机制的基础研究。Flow-Xl还将使我们能够与整个英国研究界分享我们在X射线测量流通池制造方面的专业知识。Flow-Xl将作为一个多用户设施运营,向英国所有学术和工业研究人员开放,并将由经验丰富的研究人员提供支持。这将使设备能够充分利用于广泛的项目,包括工业过程,以发展基本的理解。除了提供尖端的独立研究设施外,Flow-Xl还将通过为许多实验提供同步加速器时间的替代或先驱来支持Diamond Light Source及其用户。这为真正需要的实验腾出了宝贵的束流时间,并使研究人员能够在束流时间之前进行筛选/可行性实验。该设施将支持一系列现有项目,包括有机框架化合物的形成,生物矿化和生物启发结晶,污垢,材料发现,单一对映体晶体的生产,多晶型物选择和结晶建模中人工智能的开发。通过在项目过程中建立来自学术界和工业界的强大用户社区,我们将确保这一强大的新设施在广泛的科学计划中得到应用。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polyamines Promote Aragonite Nucleation and Generate Biomimetic Structures.
- DOI:10.1002/advs.202203759
- 发表时间:2022-11-20
- 期刊:
- 影响因子:15.1
- 作者:Nahi, Ouassef;Kulak, Alexander N.;Zhang, Shuheng;He, Xuefeng;Aslam, Zabeada;Ilett, Martha A.;Ford, Ian J.;Darkins, Robert;Meldrum, Fiona C.
- 通讯作者:Meldrum, Fiona C.
Positively Charged Additives Facilitate Incorporation in Inorganic Single Crystals.
带正电荷的添加剂促进无机单晶掺入。
- DOI:10.1021/acs.chemmater.2c00097
- 发表时间:2022-06-14
- 期刊:
- 影响因子:8.6
- 作者:Nahi, Ouassef;Broad, Alexander;Kulak, Alexander N.;Freeman, Helen M.;Zhang, Shuheng;Turner, Thomas D.;Roach, Lucien;Darkins, Robert;Ford, Ian J.;Meldrum, Fiona C.
- 通讯作者:Meldrum, Fiona C.
Serial small- and wide-angle X-ray scattering with laboratory sources.
- DOI:10.1107/s2052252522007631
- 发表时间:2022-09-01
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fiona Meldrum其他文献
Fiona Meldrum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fiona Meldrum', 18)}}的其他基金
Crystallisation in the Real World: Delivering Control through Theory and Experiment
现实世界的结晶:通过理论和实验提供控制
- 批准号:
EP/R018820/1 - 财政年份:2018
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
Doped-Up: Bio-Inspired Assembly of Single Crystal Nanocomposites
掺杂:单晶纳米复合材料的仿生组装
- 批准号:
EP/P005233/1 - 财政年份:2017
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
NEW STRATEGIES FOR CONTROLLING CRYSTALLIZATION
控制结晶的新策略
- 批准号:
EP/N002423/1 - 财政年份:2015
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
BIOMOLECULE-DIRECTED EVOLUTION OF INORGANIC NANOMATERIALS
无机纳米材料的生物分子定向进化
- 批准号:
EP/L015005/1 - 财政年份:2014
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
Core Capability for Chemistry Research - Leeds
化学研究核心能力 - 利兹
- 批准号:
EP/K039202/1 - 财政年份:2013
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
Materials World Network: Composite Single Crystals - From Structural Evolution to Mechanical Characterization
材料世界网络:复合单晶 - 从结构演化到机械表征
- 批准号:
EP/J018589/1 - 财政年份:2012
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
BIO-INSPIRED APPROACHES TO FUNCTIONAL NANOSTRUCTURED MATERIALS
功能性纳米结构材料的仿生方法
- 批准号:
EP/K006304/1 - 财政年份:2012
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
Crystallisation in Confinement - A Biological Perspective
监禁中的结晶——生物学视角
- 批准号:
EP/H005374/1 - 财政年份:2010
- 资助金额:
$ 143.86万 - 项目类别:
Fellowship
BIOMIMETIC SYNTHESIS OF CRYSTALLINE MATERIALS WITH COMPOSITE STRUCTURES
复合结构晶体材料的仿生合成
- 批准号:
EP/G00868X/1 - 财政年份:2009
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
Biomimetic Routes to Crystals with Superior Mechanical Properties
具有卓越机械性能的晶体的仿生路线
- 批准号:
EP/E037364/2 - 财政年份:2009
- 资助金额:
$ 143.86万 - 项目类别:
Research Grant
相似国自然基金
内质网Pannexin1与线粒体BCL-xL互作致
mtDNA释放介导急性肾损伤后慢性肾脏病
进展的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
太赫兹XL-MIMO通信系统稀疏信道估计及联合传输优化技术的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向复杂非平稳近场环境的毫米波XL-
MIMO信道估计技术研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
黄芩苷上调Bcl-XL/Bcl-2通过Nrf2-GPX4通路抑制铁死亡减轻大鼠肠道缺血再灌注损伤
- 批准号:2025JJ81028
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SKP-2 调控Bcl-xL 促进口腔鳞癌放疗抵抗的机制研究
- 批准号:2024JJ9261
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
抑制MRPS21协同Bcl-xL抑制剂诱导前列腺癌细胞合成致死的分子机制研究
- 批准号:82303033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前列腺癌中MRPS21通过ATR/GATA2调控Bcl-xL凋亡信号的功能和机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Bcl-xL调控PPM1A介导的Smad信号转导在肾脏纤维化中的作用与机制
- 批准号:82304598
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-423-5p靶向作用BCL-XL/BCL-2抑制缺血性脑卒中神经元凋亡及作为预警标志物的研究
- 批准号:2023JJ50372
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
SPOP介导Bcl-xL泛素化降解的分子机制及其逆转卵巢癌顺铂耐药的作用研究
- 批准号:32300641
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
XL-Connect Large scale system approach for advanced charging solutions
XL-Connect 用于高级充电解决方案的大规模系统方法
- 批准号:
10073057 - 财政年份:2023
- 资助金额:
$ 143.86万 - 项目类别:
EU-Funded
B型肝炎ウイルス複製に関わるBcl-xL多量体化機構の解明と阻害剤の検討
乙型肝炎病毒复制中涉及的 Bcl-xL 多聚化机制的阐明和抑制剂的研究
- 批准号:
22K06574 - 财政年份:2022
- 资助金额:
$ 143.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proteolysis-targeting chimera against BCL-XL inhibits breast cancer metastasis
针对 BCL-XL 的蛋白水解靶向嵌合体抑制乳腺癌转移
- 批准号:
10390383 - 财政年份:2021
- 资助金额:
$ 143.86万 - 项目类别:
Proteolysis-targeting chimera against BCL-XL inhibits breast cancer metastasis
针对 BCL-XL 的蛋白水解靶向嵌合体抑制乳腺癌转移
- 批准号:
10198532 - 财政年份:2021
- 资助金额:
$ 143.86万 - 项目类别:
Proteolysis-targeting chimera against BCL-XL inhibits breast cancer metastasis
针对 BCL-XL 的蛋白水解靶向嵌合体抑制乳腺癌转移
- 批准号:
10653814 - 财政年份:2021
- 资助金额:
$ 143.86万 - 项目类别:
Development of dmPGE2 and Bcl-xl-targeting senolytics as medical countermeasures for H-ARS and DEARE
开发 dmPGE2 和 Bcl-xl 靶向 senolytics 作为 H-ARS 和 DEARE 的医疗对策
- 批准号:
10401459 - 财政年份:2020
- 资助金额:
$ 143.86万 - 项目类别:
Inhibition of Bcl-xL by Targeted Degradation
通过靶向降解抑制 Bcl-xL
- 批准号:
10737840 - 财政年份:2020
- 资助金额:
$ 143.86万 - 项目类别:
Chaperone-Mediated Protein Degradation of Bcl-xL and Bcl-2
分子伴侣介导的 Bcl-xL 和 Bcl-2 蛋白质降解
- 批准号:
10599452 - 财政年份:2020
- 资助金额:
$ 143.86万 - 项目类别:
Inhibition of Bcl-xL by Targeted Degradation
通过靶向降解抑制 Bcl-xL
- 批准号:
10378075 - 财政年份:2020
- 资助金额:
$ 143.86万 - 项目类别:
Development of dmPGE2 and Bcl-xl-targeting senolytics as medical countermeasures for H-ARS and DEARE
开发 dmPGE2 和 Bcl-xl 靶向 senolytics 作为 H-ARS 和 DEARE 的医疗对策
- 批准号:
10845826 - 财政年份:2020
- 资助金额:
$ 143.86万 - 项目类别: