Doped-Up: Bio-Inspired Assembly of Single Crystal Nanocomposites
掺杂:单晶纳米复合材料的仿生组装
基本信息
- 批准号:EP/P005233/1
- 负责人:
- 金额:$ 58.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to tune the physical properties of materials is extremely attractive. All too often, the performance of a material is a compromise between two important properties such as high transparency and high conductivity or low thermal conductivity and high electrical conductivity. The obvious solution to this problem is to combine materials to generate composite structures. However, the creation of a new hybrid material by simply mixing materials with complementary properties rarely results in a net advantage. The key is to exert control over the assembly of the component materials over multiple length scales.The goal of this project is to develop a robust and general methodology for the synthesis of a unique class of functional nanocomposites - single crystals containing a uniform distribution of inorganic nanoparticles. Our approach takes its inspiration from biominerals, such as bones, teeth and seashells, where these are invariably inorganic/ organic composites with hierarchical structures. Indeed, even single crystal biominerals are composites in which organic molecules are embedded within the crystal lattice. Nature therefore demonstrates that although crystallisation is a common means of purification, it is entirely possible to occlude additives within a crystal lattice given the appropriate pairing of the crystal and additive. Using the biologically-important mineral calcite (calcium carbonate) as a test system, we have made the exiting discovery that this biogenic strategy can be translated to synthetic systems to achieve efficient nanoparticle occlusion in single crystals. We now wish to build on these preliminary results to develop our bio-inspired crystallisation strategy - in which copolymer-stabilised nanoparticles are used as simple crystal growth additives - for the synthesis of functional nanoparticle/ single crystal nanocomposites. This strategy delivers a number of key features. We are creating nanocomposites in which the nanoparticles are embedded within a single crystal, rather than the typical amorphous or polycrystalline matrix, and the nanoparticles are not aggregated. This provides a unique structure where the absence of grain boundaries is expected to enhance many physical properties. It is experimentally straightforward and amenable to scale-up, and we can easily produce sufficient material to determine structure/property relationships. We also benefit from the vast knowledge that is available concerning the crystallisation of traditional ionic compounds to control the size, shape and porosity of the nanocomposites. Judicious design of the copolymer will provide control over the structures of the nanocomposites at the nano- and meso- length scales, and we will establish a tool-kit for controlling the nanoparticle loading, the inter-particle separations and the interfaces between the nanoparticles and the crystal host. As a suitable test-system we will focus on functional metal oxides containing noble metal nanoparticles/ quantum dots and study their transport and photocatalytic properties. Particular emphasis will be placed on evaluating the structure/property relationships, where the absence of grain boundaries and our ability to tune the structures of our materials is expected to provide us with unique information about their material properties. Our synthetic method is quite general however, and it is envisaged that it can be used as a platform for creating a broad spectrum of materials including capacitors, batteries, thermoelectrics and electrochromics. Finally, while significant efforts have been made to identify the strategies by which organisms control crystallisation, these have seldom been applied to functional materials. This project will demonstrate the feasibility and potential of this approach, and will hopefully inspire other researchers to use bio-inspired crystallisation strategies to control the structure and properties of advanced materials.
调整材料物理特性的能力极具吸引力。通常,材料的性能是两个重要特性之间的折衷,例如高透明度和高导电性或低导热性和高导电性。这个问题的明显解决方案是将材料联合收割机以产生复合结构。然而,通过简单地混合具有互补性质的材料来创造新的混合材料很少会产生净优势。关键是要控制组件材料在多个长度尺度上的组装。该项目的目标是开发一种强大的通用方法来合成一类独特的功能纳米复合材料-含有均匀分布的无机纳米颗粒的单晶。我们的方法的灵感来自生物矿物,如骨骼,牙齿和贝壳,这些都是具有层次结构的无机/有机复合材料。事实上,即使是单晶生物矿物也是有机分子嵌入晶格中的复合材料。因此,自然界证明,尽管结晶是一种常见的纯化方法,但在晶体和添加剂适当配对的情况下,完全有可能将添加剂包藏在晶格内。使用生物学上重要的矿物方解石(碳酸钙)作为测试系统,我们已经取得了令人兴奋的发现,这种生物策略可以转化为合成系统,以实现单晶中有效的纳米颗粒包埋。我们现在希望在这些初步结果的基础上开发我们的生物启发结晶策略-其中共聚物稳定的纳米颗粒用作简单的晶体生长添加剂-用于合成功能性纳米颗粒/单晶纳米复合材料。这一战略提供了一些关键功能。我们正在制造纳米复合材料,其中纳米颗粒嵌入单晶中,而不是典型的无定形或多晶基质,并且纳米颗粒不聚集。这提供了一种独特的结构,其中不存在晶界预期会增强许多物理性质。它在实验上是简单的,并且易于放大,我们可以很容易地生产足够的材料来确定结构/性能关系。我们还受益于关于传统离子化合物结晶的大量知识,以控制纳米复合材料的尺寸,形状和孔隙率。明智的设计的共聚物将提供控制的纳米复合材料的结构在纳米和介观长度尺度,我们将建立一个工具包,用于控制纳米粒子的负载,粒子间的分离和纳米粒子和晶体主机之间的接口。作为一个合适的测试系统,我们将集中在功能金属氧化物含有贵金属纳米粒子/量子点,并研究其传输和光催化性能。特别强调的是将放在评估的结构/性能的关系,其中没有晶界和我们的能力,调整我们的材料的结构,预计将为我们提供有关其材料性能的独特信息。然而,我们的合成方法是相当通用的,并且设想它可以用作创建包括电容器、电池、热电和电致变色材料在内的广泛材料的平台。最后,虽然已作出重大努力,以确定生物体控制结晶的策略,这些很少被应用到功能材料。该项目将展示这种方法的可行性和潜力,并有望激励其他研究人员使用生物启发结晶策略来控制先进材料的结构和性能。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iron supported on bioinspired green silica for water remediation.
- DOI:10.1039/c6sc02937j
- 发表时间:2017-01-01
- 期刊:
- 影响因子:8.4
- 作者:Alotaibi KM;Shiels L;Lacaze L;Peshkur TA;Anderson P;Machala L;Critchley K;Patwardhan SV;Gibson LT
- 通讯作者:Gibson LT
Skin-Deep Surface Patterning of Calcite
- DOI:10.1021/acs.chemmater.9b02421
- 发表时间:2019-11-12
- 期刊:
- 影响因子:8.6
- 作者:Green, David C.;Shida, Yosuke;Meldrum, Fiona C.
- 通讯作者:Meldrum, Fiona C.
Systematic Analysis of the Coupling Effects within Supported Plasmonic Nanorod Antenna Arrays
支持等离子体纳米棒天线阵列内耦合效应的系统分析
- DOI:10.1021/acs.jpcc.8b04830
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Cottom J
- 通讯作者:Cottom J
Ultrafast Trap State-Mediated Electron Transfer for Quantum Dot Redox Sensing
- DOI:10.1021/acs.jpcc.8b02551
- 发表时间:2018-04
- 期刊:
- 影响因子:3.7
- 作者:A. Harvie;Charles T Smith;Ruben Ahumada-Lazo;L. Jeuken;M. Califano;R. Bon;S. Hardman;D. Binks;K. Critchley
- 通讯作者:A. Harvie;Charles T Smith;Ruben Ahumada-Lazo;L. Jeuken;M. Califano;R. Bon;S. Hardman;D. Binks;K. Critchley
How Many Phosphoric Acid Units Are Required to Ensure Uniform Occlusion of Sterically Stabilized Nanoparticles within Calcite?
- DOI:10.1002/anie.201901307
- 发表时间:2019-06-24
- 期刊:
- 影响因子:16.6
- 作者:Douverne, Marcel;Ning, Yin;Armes, Steven P.
- 通讯作者:Armes, Steven P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fiona Meldrum其他文献
Fiona Meldrum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fiona Meldrum', 18)}}的其他基金
Flow-Xl: A New UK Facility for Analysis of Crystallisation in Flow Systems
Flow-Xl:英国新的流动系统结晶分析设施
- 批准号:
EP/T006331/1 - 财政年份:2020
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
Crystallisation in the Real World: Delivering Control through Theory and Experiment
现实世界的结晶:通过理论和实验提供控制
- 批准号:
EP/R018820/1 - 财政年份:2018
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
NEW STRATEGIES FOR CONTROLLING CRYSTALLIZATION
控制结晶的新策略
- 批准号:
EP/N002423/1 - 财政年份:2015
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
BIOMOLECULE-DIRECTED EVOLUTION OF INORGANIC NANOMATERIALS
无机纳米材料的生物分子定向进化
- 批准号:
EP/L015005/1 - 财政年份:2014
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
Core Capability for Chemistry Research - Leeds
化学研究核心能力 - 利兹
- 批准号:
EP/K039202/1 - 财政年份:2013
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
Materials World Network: Composite Single Crystals - From Structural Evolution to Mechanical Characterization
材料世界网络:复合单晶 - 从结构演化到机械表征
- 批准号:
EP/J018589/1 - 财政年份:2012
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
BIO-INSPIRED APPROACHES TO FUNCTIONAL NANOSTRUCTURED MATERIALS
功能性纳米结构材料的仿生方法
- 批准号:
EP/K006304/1 - 财政年份:2012
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
Crystallisation in Confinement - A Biological Perspective
监禁中的结晶——生物学视角
- 批准号:
EP/H005374/1 - 财政年份:2010
- 资助金额:
$ 58.3万 - 项目类别:
Fellowship
BIOMIMETIC SYNTHESIS OF CRYSTALLINE MATERIALS WITH COMPOSITE STRUCTURES
复合结构晶体材料的仿生合成
- 批准号:
EP/G00868X/1 - 财政年份:2009
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
Biomimetic Routes to Crystals with Superior Mechanical Properties
具有卓越机械性能的晶体的仿生路线
- 批准号:
EP/E037364/2 - 财政年份:2009
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
相似国自然基金
“Bottom-up”策略构筑金属纳米粒子-多孔有机聚合物复合催化材料
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
碳锰双功能催化剂低温协同脱除烧结烟气NOx与UP-POPs研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于MS/MS和UP-MMCA的新生儿甲基丙二酸血症二阶筛查新方法构建与临床应用研究
- 批准号:82101824
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
简便快速bottom-up法制备含氮空位中心的纳米金刚石晶体
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
长效GnRHa“flare-up”效应通过AMPK通路抑制子宫腺肌症患者卵泡发育的机制
- 批准号:81801418
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于MOFs衍生的多孔纳米复合金属氧化物的制备及其低温催化降解UP-POPs机理研究
- 批准号:21777159
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
多功能载紫杉醇靶向磁性纳米粒UP-MNP-C11诊治动脉粥样硬化的实验研究
- 批准号:81270413
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
基于MAS/UP模型的城市“四规合一”研究——以朝阳区为实证
- 批准号:71203212
- 批准年份:2012
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
手性有机多孔材料:“Bottom-Up”策略实现手性有机小分子催化剂的多相化
- 批准号:21172103
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:面上项目
Start-up验证试验建模与研究
- 批准号:70901008
- 批准年份:2009
- 资助金额:18.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Develop novel processing for bio-based wadding material for fashion and textiles, with manufacturability assessment for scale-up
开发用于时装和纺织品的生物基填充材料的新型加工方法,并进行规模化的可制造性评估
- 批准号:
10036488 - 财政年份:2023
- 资助金额:
$ 58.3万 - 项目类别:
Collaborative R&D
Industrial scale-up and functionality extension of novel compostable (and bio-based) hetero-aromatic biopolymers for the flexible packaging and coatings industries (BioPolyScaleUp)
用于软包装和涂料行业的新型可堆肥(和生物基)杂芳族生物聚合物的工业放大和功能扩展(BioPolyScaleUp)
- 批准号:
10030679 - 财政年份:2022
- 资助金额:
$ 58.3万 - 项目类别:
Collaborative R&D
Scaling up the production of bio-based and biodegradable packaging for the cosmetics industry
扩大化妆品行业生物基和可生物降解包装的生产
- 批准号:
98142 - 财政年份:2021
- 资助金额:
$ 58.3万 - 项目类别:
Collaborative R&D
HBCU DCL: EAGER: Engineering A Sustainable Bio-based Nano Composite from Biomass Using A Bottom-up Synthesis and Characterization Approach
HBCU DCL:EAGER:使用自下而上的合成和表征方法从生物质中设计可持续的生物基纳米复合材料
- 批准号:
1928807 - 财政年份:2019
- 资助金额:
$ 58.3万 - 项目类别:
Standard Grant
Molecular up-cycling: bio-transforming waste plastic into value-added products
分子升级再造:将废塑料生物转化为增值产品
- 批准号:
BB/S010629/1 - 财政年份:2019
- 资助金额:
$ 58.3万 - 项目类别:
Fellowship
Doped-Up: Bio-Inspired Assembly of Single Crystal Nanocomposites
掺杂:单晶纳米复合材料的仿生组装
- 批准号:
EP/P005241/1 - 财政年份:2017
- 资助金额:
$ 58.3万 - 项目类别:
Research Grant
HBCU DCL: EAGER: Engineering A Sustainable Bio-based Nano Composite from Biomass Using A Bottom-up Synthesis and Characterization Approach
HBCU DCL:EAGER:使用自下而上的合成和表征方法从生物质中设计可持续的生物基纳米复合材料
- 批准号:
1737620 - 财政年份:2017
- 资助金额:
$ 58.3万 - 项目类别:
Standard Grant
Scale-up and commercial evaluation of the manufacture of bio-based FDCA from HMF
HMF 生物基 FDCA 生产的放大和商业评估
- 批准号:
103760 - 财政年份:2017
- 资助金额:
$ 58.3万 - 项目类别:
Collaborative R&D
Collaborative Research: Bilateral BBSRC-NSF/BIO: Regulation of plant stomatal aperture by SAUR (Small Auxin Up RNA) proteins
合作研究:双边 BBSRC-NSF/BIO:SAUR(小生长素 Up RNA)蛋白调节植物气孔孔径
- 批准号:
1613809 - 财政年份:2016
- 资助金额:
$ 58.3万 - 项目类别:
Continuing Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Regulation of plant stomatal aperture by SAUR (Small Auxin Up RNA) proteins
合作研究:双边 BBSRC-NSF/BIO:SAUR(小生长素 Up RNA)蛋白调节植物气孔孔径
- 批准号:
1615557 - 财政年份:2016
- 资助金额:
$ 58.3万 - 项目类别:
Continuing Grant