Elastic Sensor Networks: Towards Attention-Based Information Management in Large-Scale Sensor Networks
弹性传感器网络:大规模传感器网络中基于注意力的信息管理
基本信息
- 批准号:EP/H042512/1
- 负责人:
- 金额:$ 60.11万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project, which will be co-funded by the Institute of Security Science and Technology at Imperial College London, aims to develop a novel theoretical framework and associated computational model for information management in Large-scale Sensor Networks (LSSN). Applications of such networks are drawing wide attention from both academia and industry ranging from home monitoring to industry sensing, including environment and habitat monitoring, security, traffic control and health care. A key challenge in managing such networks is that of avoiding information overload as the amount of information monitored increases. A second key challenge is how to effectively maximize the value of collected information under resource and real-time constraints. Addressing both challenges requires developing effective and efficient methods for organizing information collection and information processing that focus on analyzing only information relevant to the user needs.Our key hypothesis in this proposal is that an analogy between information processing by humans, in particular their well-evolved human attention mechanism, and information processing in sensor networks would lead to the development of novel and highly effective information management strategies for LSSNs. This analogy would enable us to exploit effectively the relationship between local and global information, avoid information overload in the application and also minimize unnecessary resource consumption (processing and communication) in the network. Our interest in developing and using an attention-like mechanism in sensor networks is driven by the fact that it could be mapped easily to a concise and robust Bayesian formulation. Such a formulation would enable us and other researchers to reason about the correctness of the approach and also to reason about its extensions and potential improvements beyond this project.Our work in this project thus focuses on addressing a number of key challenges both at the theoretical and practical levels, including the extension and application a standard Bayesian probabilistic framework to the LSSN setting, developing the foundations for an elastic resource allocation model for such networks and supporting a decentralized approach for our implementation that scales to large scale networks implementations.In addition to developing the theoretical foundations, our work will also include developing functional prototypes of a distributed LSSN information management system using both simulations and real sensor hardware. The evaluation of our methods will proceed using case studies from two application areas: multi-modality security monitoring and urban pollution monitoring. The evaluation will be conducted in close collaboration with end users in the Institute of Security Science and Technology (ISST) and the Cenre of Transportation Studies (CTS) at Imperial College London as well as with collaborators in three international institutions (Rutgers University, Harvard University and Monash University). The evaluation will be based on real and simulated data sets to compare the efficacy and efficiency of the proposed approach against traditional and competing methods.
该项目将由伦敦帝国理工学院安全科学和技术研究所共同资助,旨在为大规模传感器网络(LSSN)的信息管理开发一种新的理论框架和相关的计算模型。这类网络的应用正引起学术界和工业界的广泛关注,从家庭监控到工业传感,包括环境和栖息地监控、安全、交通控制和医疗保健。管理这类网络的一个关键挑战是,随着监控信息量的增加,如何避免信息过载。第二个关键挑战是如何在资源和实时约束下有效地最大化收集的信息的价值。解决这两个挑战需要开发有效和高效的方法来组织信息收集和信息处理,重点是只分析与用户需求相关的信息。我们的关键假设是,将人类的信息处理,特别是人类良好进化的人类注意力机制,与传感器网络中的信息处理进行类比,将导致针对LSSN的新型和高效的信息管理策略的发展。这种类比将使我们能够有效地利用局部和全局信息之间的关系,避免应用程序中的信息过载,还可以最大限度地减少网络中不必要的资源消耗(处理和通信)。我们对在传感器网络中开发和使用类注意机制的兴趣是因为它可以很容易地映射到简洁和健壮的贝叶斯公式。这样的表述将使我们和其他研究人员能够推理该方法的正确性,并对其扩展和在该项目之外的潜在改进进行推理。因此,我们在该项目中的工作集中于在理论和实践层面上解决一些关键挑战,包括将标准贝叶斯概率框架扩展和应用到LSSN环境中,为此类网络的弹性资源分配模型建立基础,并支持可扩展到大规模网络实施的分散方法。除了发展理论基础之外,我们的工作还将包括使用模拟和真实传感器硬件来开发分布式LSSN信息管理系统的功能原型。对我们的方法的评估将使用来自两个应用领域的案例研究:多模式安全监测和城市污染监测。评价将与伦敦帝国理工学院安全科学和技术研究所(ISST)和运输研究中心(CTS)的最终用户以及三个国际机构(罗格斯大学、哈佛大学和莫纳什大学)的合作者密切合作进行。评估将基于真实和模拟的数据集,以比较所提出的方法与传统方法和竞争方法的有效性和效率。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Principles of Elastic Processes
- DOI:10.1109/mic.2011.121
- 发表时间:2011-09
- 期刊:
- 影响因子:3.2
- 作者:S. Dustdar;Yike Guo;B. Satzger;Hong Linh Truong
- 通讯作者:S. Dustdar;Yike Guo;B. Satzger;Hong Linh Truong
Social networking federation: A position paper
- DOI:10.1016/j.compeleceng.2011.11.028
- 发表时间:2012-03
- 期刊:
- 影响因子:0
- 作者:Chao Wu;Yike Guo;Bo Zhou
- 通讯作者:Chao Wu;Yike Guo;Bo Zhou
Enabling cost-aware and adaptive elasticity of multi-tier cloud applications
实现多层云应用程序的成本感知和自适应弹性
- DOI:10.1016/j.future.2012.05.018
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Han R
- 通讯作者:Han R
IC Cloud: A Design Space for Composable Cloud Computing
- DOI:10.1109/cloud.2010.18
- 发表时间:2010-07
- 期刊:
- 影响因子:0
- 作者:Li Guo;Yike Guo;Xiangchuan Tian
- 通讯作者:Li Guo;Yike Guo;Xiangchuan Tian
Elastic algorithms for guaranteeing quality monotonicity in big data mining
大数据挖掘中保证质量单调性的弹性算法
- DOI:10.1109/bigdata.2013.6691553
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Han R
- 通讯作者:Han R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi-Ke Guo其他文献
Dynamic link prediction: Using language models and graph structures for temporal knowledge graph completion with emerging entities and relations
动态链接预测:使用语言模型和图结构对具有新兴实体和关系的时间知识图谱完成
- DOI:
10.1016/j.eswa.2025.126648 - 发表时间:
2025-05-05 - 期刊:
- 影响因子:7.500
- 作者:
Ryan Ong;Jiahao Sun;Yi-Ke Guo;Ovidiu Serban - 通讯作者:
Ovidiu Serban
Yi-Ke Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi-Ke Guo', 18)}}的其他基金
Rogue Virtual Machine Identification in DaISy Clouds
DaISy 云中的恶意虚拟机识别
- 批准号:
EP/J020478/1 - 财政年份:2012
- 资助金额:
$ 60.11万 - 项目类别:
Research Grant
相似国自然基金
人类NADPH sensor蛋白HSCARG调控机制研究
- 批准号:30930020
- 批准年份:2009
- 资助金额:170.0 万元
- 项目类别:重点项目
基于sensor agent的营养液组分动态测量与建模研究
- 批准号:60775014
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Data Privacy Protection in Wireless Sensor Networks
无线传感器网络中的数据隐私保护
- 批准号:
DP240102140 - 财政年份:2024
- 资助金额:
$ 60.11万 - 项目类别:
Discovery Projects
Smart sensor networks for flood and drought resilience
用于抵御洪水和干旱的智能传感器网络
- 批准号:
2890490 - 财政年份:2023
- 资助金额:
$ 60.11万 - 项目类别:
Studentship
QuSeC-TAQS: Quantum Sensor Networks for Metrology, Chemistry and Astrophysics
QuSeC-TAQS:用于计量、化学和天体物理学的量子传感器网络
- 批准号:
2326787 - 财政年份:2023
- 资助金额:
$ 60.11万 - 项目类别:
Continuing Grant
Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
- 批准号:
10652078 - 财政年份:2023
- 资助金额:
$ 60.11万 - 项目类别:
Study on Decentralized Management of Large-scale Sensor Networks Utilizing Biological Mechanisms
利用生物机制的大规模传感器网络分散管理研究
- 批准号:
23H03390 - 财政年份:2023
- 资助金额:
$ 60.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
L2M NSERC - A Novel Mechanical Sensor for Online Flow Rate Monitoring in Subsea Pipeline Networks
L2M NSERC - 用于海底管网在线流量监测的新型机械传感器
- 批准号:
580749-2023 - 财政年份:2022
- 资助金额:
$ 60.11万 - 项目类别:
Idea to Innovation
Underwater Acoustic Sensor Networks
水下声学传感器网络
- 批准号:
RGPIN-2019-06156 - 财政年份:2022
- 资助金额:
$ 60.11万 - 项目类别:
Discovery Grants Program - Individual
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
- 批准号:
2236565 - 财政年份:2022
- 资助金额:
$ 60.11万 - 项目类别:
Standard Grant
Intent-Based Network Management of Software Defined Wireless Sensor Networks
软件定义无线传感器网络的基于意图的网络管理
- 批准号:
RGPIN-2019-04454 - 财政年份:2022
- 资助金额:
$ 60.11万 - 项目类别:
Discovery Grants Program - Individual
Wireless Sensor Networks for Smart Cities
智慧城市无线传感器网络
- 批准号:
RGPIN-2016-04007 - 财政年份:2022
- 资助金额:
$ 60.11万 - 项目类别:
Discovery Grants Program - Individual