QuSeC-TAQS: Quantum Sensor Networks for Metrology, Chemistry and Astrophysics
QuSeC-TAQS:用于计量、化学和天体物理学的量子传感器网络
基本信息
- 批准号:2326787
- 负责人:
- 金额:$ 175万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The emergence of new quantum sensors allows for unprecedented levels of sensitivity and exploration of the physical world across various scales. Quantum sensors harness the advantages of quantum coherence and entanglement. By leveraging non-local correlations distributed among multiple particles, networks of quantum sensors can enhance sensitivity and reveal the spatial structure of target signals at both microscopic and macroscopic scales. This project aims to develop a protocol to showcase the capabilities of quantum sensor networks. It involves understanding fundamental properties, conducting proof-of-principle experiments, and adapting approaches to different platforms and scales for diverse scientific applications. The project will focus on theoretical concepts to describe and enhance spatially distributed quantum sensing, utilizing cutting-edge quantum networking technology on multiple platforms: diamond defect-based nanoscale magnetic-resonance imaging to sense on the molecular scale; entangled networks of atomic clocks to sense gravitational effects; and quantum enhanced THz antenna networks to sense on astronomical scales. To achieve high-resolution magnetic resonance imaging, small clusters of paramagnetic spins associated with NV centers will be utilized for entanglement-enhanced magnetometry and optimal control. This approach enables nano-scale resolution imaging of magnetic fields in materials and biological systems. This project involves developing an entangled network of clocks, combining entanglement-based time-reversal quantum metrology with atom transport while maintaining entanglement. These capabilities will be utilized for sensing gravity gradients, searching for dark matter, and exploring physics beyond the standard model. Additionally, a quantum enhanced THz antenna will utilize collective response of Rydberg atom arrays to electric fields across a broad frequency range (10GHz - few THz). By optically connecting THz receivers and conducting a feasibility study, this team aims to establish global-scale quantum receiver arrays, potentially enabling the detection of faint stellar objects beyond current technology. The experimental work will be complemented by novel theoretical methods that incorporate recent advancements in quantum information and machine learning, including measurement-prepared quantum many-body states, optimal control, and machine learning-optimized controls. This interdisciplinary project combines state-of-the-art technologies in quantum information, atomic-molecular-optical physics, and machine learning, with wide-ranging impact across disciplines such as astrophysics, particle physics, biology, and chemistry. This project was co-funded by the Quantum Sensors Challenge for Transformative Advances in Quantum Systems (QuSeC-TAQS) program, the Special Projects program in the Division of Astronomical Sciences, the Electronic and Photonic Materials program in the Division of Materials Research, and with co-funding from the Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新的量子传感器的出现使人们能够在不同的尺度上对物理世界进行前所未有的灵敏度和探索。量子传感器利用了量子相干和纠缠的优势。通过利用分布在多个粒子之间的非局部相关性,量子传感器网络可以提高灵敏度,并在微观和宏观尺度上揭示目标信号的空间结构。该项目旨在开发一种协议来展示量子传感器网络的能力。它包括了解基本属性,进行原则证明实验,以及为不同的科学应用调整方法以适应不同的平台和规模。该项目将侧重于理论概念,以描述和加强空间分布式量子传感,在多个平台上利用尖端量子网络技术:基于钻石缺陷的纳米级磁共振成像,以在分子尺度上传感;原子钟的纠缠网络,以传感引力效应;以及量子增强型太赫兹天线网络,以在天文尺度上传感。为了实现高分辨率的磁共振成像,将利用与NV中心相关的顺磁自旋的小簇来进行纠缠增强的磁测量和最优控制。这种方法能够对材料和生物系统中的磁场进行纳米级分辨率成像。这个项目包括开发一个纠缠的时钟网络,将基于纠缠的时间反转量子计量学与原子传输结合起来,同时保持纠缠。这些能力将被用于感知重力梯度,搜索暗物质,以及探索标准模型之外的物理。此外,量子增强型太赫兹天线将利用里德堡原子阵列对宽频率范围(10 GHz-极少数太赫兹)电场的集体响应。通过光学连接太赫兹接收器并进行可行性研究,该团队的目标是建立全球范围的量子接收器阵列,潜在地能够探测到超出当前技术的微弱恒星物体。实验工作将得到新的理论方法的补充,这些方法结合了量子信息和机器学习的最新进展,包括测量准备的量子多体状态、最优控制和机器学习优化控制。这个跨学科的项目结合了量子信息、原子-分子-光学物理和机器学习方面的最新技术,并在天体物理、粒子物理、生物学和化学等学科中产生了广泛的影响。该项目由量子传感器变革性进展挑战(QuSeC-TAQS)计划、天文科学部特别项目计划、材料研究部电子和光子材料计划共同资助,并得到国际科学与工程办公室的共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Yelin其他文献
Susanne Yelin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanne Yelin', 18)}}的其他基金
NSF BSF: Nonlinear Photon Interactions in Cooperative Quantum Optical Systems
NSF BSF:协作量子光学系统中的非线性光子相互作用
- 批准号:
2207972 - 财政年份:2022
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
Cooperative and Subradiant Phenomena in Quantum Optical Systems
量子光学系统中的协同和次辐射现象
- 批准号:
1912607 - 财政年份:2019
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
Physics and Applications of Cooperative Effects in Nonlinear and Quantum Optics
非线性和量子光学中协同效应的物理及其应用
- 批准号:
1607637 - 财政年份:2016
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Cooperative and Nonlinear Quantum Optics in Dipolar Systems
偶极系统中的协同和非线性量子光学
- 批准号:
1308798 - 财政年份:2013
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Interactive Effects in Polar Molecules and Other Dipolar Media
极性分子和其他偶极介质中的相互作用效应
- 批准号:
0970055 - 财政年份:2010
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Molecular arrays for dipole-based quantum information processing
用于基于偶极子的量子信息处理的分子阵列
- 批准号:
0803619 - 财政年份:2008
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Light propagation effects in strongly interacting gases
强相互作用气体中的光传播效应
- 批准号:
0653417 - 财政年份:2007
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Dipolar switching for robust quantum computation with polar molecules
偶极切换用于极性分子的鲁棒量子计算
- 批准号:
0555553 - 财政年份:2006
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
Collective effects in optically dense atomic clouds
光密原子云中的集体效应
- 批准号:
0354965 - 财政年份:2004
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
- 批准号:
2326784 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant














{{item.name}}会员




