Reduced models in fluid dynamics via complex variable theory
通过复变量理论简化流体动力学模型
基本信息
- 批准号:EP/I004920/1
- 负责人:
- 金额:$ 0.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many emerging technologies involving microfluidics, MEMS (micro -electro-mechanical systems) and ``lab-on-chip'' design involve the control and manipulation of fluids at very small scales when the motion and dynamical mechanisms are very different to that of our day-to-day experience of fluids. Viscous, or frictional, effects dominate and lead to a range of new effects that need to be well understood. Such flows are referred to as Stokes flows or low Reynolds number flows. The same class of flows arise in understanding the motion of swimming microorganisms such as spermatozoa or E Coli bacteria. A wide range of experimentally observed behaviour associated with such swimming organisms remains to be properly explained and many of these phenomena have hydrodynamical underpinnings. This research aims to develop simple mathematical models, centred on the use of a powerful set of mathematical techniques from complex analysis, for understanding some of the hydrodynamical mechanisms. In particular, we will focus on how the presence of boundaries - such as no-slip walls where the fluid velocity must vanish or free surfaces on which surface tension is active - can affect the dynamical behaviour of the fluid or the swimming microorganisms.A second component of our project is to study reduced models, again using complex analysis, to understand the dynamics of vorticity when the fluid in which the vorticity is present is compressible. (Sound waves, for example, are a manifestation of a compressible fluid and their interaction with vortical structures associated with aircraft wakes is an important area of study in terms of minimizing noise pollution).
涉及微流体、MEMS(微机电系统)和“芯片实验室”设计的许多新兴技术涉及在非常小的尺度下对流体的控制和操纵,此时运动和动力机制与我们对流体的日常体验非常不同。粘性或摩擦效应占主导地位,并导致一系列新的效应,需要很好地理解。这种流动被称为斯托克斯流动或低雷诺数流动。在理解游动微生物(如精子或大肠杆菌)的运动时,也会出现同样的流动。实验观察到的与这种游泳生物相关的广泛行为仍有待适当解释,其中许多现象具有流体动力学基础。这项研究的目的是开发简单的数学模型,集中在使用一套强大的数学技术,从复杂的分析,了解一些流体动力学机制。特别是,我们将重点关注边界的存在-例如流体速度必须消失的无滑动壁或表面张力活跃的自由表面-如何影响流体或游泳微生物的动力学行为。我们项目的第二个组成部分是研究简化模型,再次使用复杂分析,了解当存在涡量的流体是可压缩的时涡量的动力学。(例如,声波是可压缩流体的一种表现形式,它们与飞机尾流相关的旋涡结构的相互作用是最大限度地减少噪音污染的重要研究领域)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frictional slip lengths for unidirectional superhydrophobic grooved surfaces
- DOI:10.1063/1.3605575
- 发表时间:2011-07
- 期刊:
- 影响因子:4.6
- 作者:D. Crowdy
- 通讯作者:D. Crowdy
Structure and stability of hollow vortex equilibria
空心涡平衡结构及其稳定性
- DOI:10.1017/jfm.2011.467
- 发表时间:2011
- 期刊:
- 影响因子:3.7
- 作者:Llewellyn Smith S
- 通讯作者:Llewellyn Smith S
Frictional slip lengths and blockage coefficients
- DOI:10.1063/1.3642621
- 发表时间:2011-09
- 期刊:
- 影响因子:4.6
- 作者:D. Crowdy
- 通讯作者:D. Crowdy
Translating hollow vortex pairs
平移空心涡对
- DOI:10.1016/j.euromechflu.2012.09.007
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Crowdy D
- 通讯作者:Crowdy D
Stresslet asymptotics for a treadmilling swimmer near a two-dimensional corner: hydrodynamic bound states
跑步游泳运动员在二维角附近的应力渐进:流体动力学束缚态
- DOI:10.1098/rspa.2012.0237
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Davis A
- 通讯作者:Davis A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darren Crowdy其他文献
Viscous Marangoni Flow Driven by Insoluble Surfactant and the Complex Burgers Equation
不溶性表面活性剂驱动的粘性Marangoni流和复杂的Burgers方程
- DOI:
10.1137/21m1400316 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Darren Crowdy - 通讯作者:
Darren Crowdy
A constructive method for plane-wave representations of special functions
- DOI:
10.1016/j.jmaa.2015.11.013 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Darren Crowdy - 通讯作者:
Darren Crowdy
Cole–Hopf linearization of the thermocapillary Marangoni dynamics of a two-dimensional bubble with insoluble surfactant
- DOI:
10.1007/s10665-024-10397-5 - 发表时间:
2024-09-23 - 期刊:
- 影响因子:1.400
- 作者:
Darren Crowdy - 通讯作者:
Darren Crowdy
Exact solutions for two steady inviscid bubbles in the slow viscous flow generated by a four-roller mill
- DOI:
10.1023/a:1021267512989 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Darren Crowdy - 通讯作者:
Darren Crowdy
Exact solutions for the viscous sintering of multiply-connected fluid domains
- DOI:
10.1023/a:1016105004845 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Darren Crowdy - 通讯作者:
Darren Crowdy
Darren Crowdy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darren Crowdy', 18)}}的其他基金
The nexus of conformal geometry, action principles and tau-functions: a pathway to novel constructive methods for shape analysis and imaging
共形几何、作用原理和 tau 函数的联系:形状分析和成像新颖构建方法的途径
- 批准号:
EP/K019430/1 - 财政年份:2013
- 资助金额:
$ 0.73万 - 项目类别:
Fellowship
Function theory in multiply-connected domains & applications to physical systems
多重连通域中的函数论
- 批准号:
EP/C545036/1 - 财政年份:2006
- 资助金额:
$ 0.73万 - 项目类别:
Fellowship
Function theory in multiply-connected domains & applications to physical systems
多重连通域中的函数论
- 批准号:
EP/C545044/1 - 财政年份:2006
- 资助金额:
$ 0.73万 - 项目类别:
Research Grant
Exponential asymptotics for integro-differential equations
积分微分方程的指数渐近
- 批准号:
EP/D052459/1 - 财政年份:2006
- 资助金额:
$ 0.73万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Pannexin-1/P2X7 interaction promotes excessive ATP release in kidney cysts and ADPKD progression via reduced NaCl reabsorption
Pannexin-1/P2X7 相互作用通过减少 NaCl 重吸收促进肾囊肿中 ATP 过度释放和 ADPKD 进展
- 批准号:
10614647 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Sparsification of reduced order models for fluid and fluid-structure problems
流体和流体结构问题的降阶模型的稀疏化
- 批准号:
2611907 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Studentship
DEVELOPMENT OF REDUCED ORDER ZONAL MODELS WITH DATA-DRIVEN APPROACHES FOR COMPLEX FLUID MIXING
使用数据驱动的复杂流体混合方法开发降阶分区模型
- 批准号:
2586079 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Studentship
Pannexin-1/P2X7 interaction promotes excessive ATP release in kidney cysts and ADPKD progression via reduced NaCl reabsorption
Pannexin-1/P2X7 相互作用通过减少 NaCl 重吸收促进肾囊肿中 ATP 过度释放和 ADPKD 进展
- 批准号:
10415031 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.
开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。
- 批准号:
9924241 - 财政年份:2019
- 资助金额:
$ 0.73万 - 项目类别:
Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.
开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。
- 批准号:
9761194 - 财政年份:2019
- 资助金额:
$ 0.73万 - 项目类别:
Reduced Order Models of the Navier-Stokes Equations of Fluid Flows
流体流动纳维-斯托克斯方程的降阶模型
- 批准号:
1435474 - 财政年份:2014
- 资助金额:
$ 0.73万 - 项目类别:
Standard Grant
Model for Electrode Testing and Reduced Animal Use
电极测试和减少动物使用的模型
- 批准号:
6658114 - 财政年份:2000
- 资助金额:
$ 0.73万 - 项目类别:
Model for Electrode Testing and Reduced Animal Use
电极测试和减少动物使用的模型
- 批准号:
6484447 - 财政年份:2000
- 资助金额:
$ 0.73万 - 项目类别:
Symbolic Computing and Dimensionally Reduced Models of Fluid Flow
流体流动的符号计算和降维模型
- 批准号:
9531828 - 财政年份:1996
- 资助金额:
$ 0.73万 - 项目类别:
Standard Grant