A SINGLE PROCESS THEORY OF VISUAL SEARCH

视觉搜索的单一过程理论

基本信息

项目摘要

The great majority of studies of visual search have suggested that behavior is either one of two types. In some cases, it appears that capacity is unlimited, stimuli are processed in parallel and attention is spread out over the entire visual field. In other cases, it appears that capacity is limited, stimuli are processed in series, and attention is narrowly focused on a single stimulus. Dual process theories have been used to explain why the type of stimulus materials, the level of practice and the consistency of the mapping of stimuli to responses determines which of the two types of behavior will be observed. Recently, it has been argued that the dual process theories are too extreme. The overall goal of the proposed research is to develop an alternative single process theory that can better explain the changes in behavior in visual search tasks that occur with changes in stimuli, practice and mapping. First, tests will be made of a model of central processing which assumes that the number of comparison channels varies in predictable ways with the type of task (an extension of Fisher's limited channel model). Second, tests will be made of changes in the size of the effective visual field which occur with changes in the type of task using a Stanford Research Institute Eye Tracker. These results will help determine whether the comparison channels are spatially arrayed over the visual field. Finally, tests will be made of the effect on performance of variations in the number of critical features to which attention must be paid. These results will suggest whether the actual function of the comparison channels is changing with changes in stimuli, practice and mapping. When fully articulated, the single process theory should provide a complete account of how the number of channels, the focus of attention, and the activity on each channel varies with the nature of the task. Finally, the above research has an applied significance. In particular, it may help determine the sources of the observed information processing deficits in schizophrenics.
绝大多数关于视觉搜索的研究表明,行为 是两种类型中的一种。在某些情况下,容量似乎是 无限的,刺激被并行处理,注意力被分散 覆盖整个视野。在其他情况下,容量似乎是 有限的刺激是连续处理的,注意力集中在狭隘的范围内 在单一的刺激下。双过程理论被用来解释为什么 刺激材料的类型、练习的水平和一致性 刺激到反应的映射决定了两种类型中的哪一种 我们会观察他们的行为。 最近,有人争论说,对偶过程理论太过 极端。拟议研究的总体目标是开发一种 替代单过程理论,可以更好地解释 视觉搜索任务中的行为,随着刺激的变化而发生, 练习和绘制地图。首先,将对中环的一个模型进行测试 假设比较通道的数量在 任务类型的可预测方法(Fisher有限的扩展 渠道模型)。第二,将测试大小的变化 当任务类型发生变化时,使用 斯坦福研究所眼球追踪器。这些结果将有助于确定 比较通道是否在视觉上空间排列 菲尔德。最后,将测试对性能的影响 必须注意的关键特征的数量的变化 付了钱。这些结果将表明, 比较渠道随着刺激、练习和 映射。当完全阐明时,单过程理论应该提供 完整地说明了频道的数量,关注的焦点, 而且每个频道上的活动都会因任务的性质而异。 最后,上述研究具有一定的应用意义。特别是,它 可以帮助确定观察到的信息处理的来源 精神分裂症患者的缺陷。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DONALD Lloyd FISHER其他文献

DONALD Lloyd FISHER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DONALD Lloyd FISHER', 18)}}的其他基金

Newly-licensed Driver Crashes: Causes and Remediation
新驾照司机发生车祸:原因与补救措施
  • 批准号:
    8117689
  • 财政年份:
    2007
  • 资助金额:
    $ 2.75万
  • 项目类别:
Newly-licensed Driver Crashes: Causes and Remediation
新驾照司机发生车祸:原因与补救措施
  • 批准号:
    7505441
  • 财政年份:
    2007
  • 资助金额:
    $ 2.75万
  • 项目类别:
Newly-licensed Driver Crashes: Causes and Remediation
新驾照司机发生车祸:原因与补救措施
  • 批准号:
    7353478
  • 财政年份:
    2007
  • 资助金额:
    $ 2.75万
  • 项目类别:
Newly-licensed Driver Crashes: Causes and Remediation
新驾照司机发生车祸:原因与补救措施
  • 批准号:
    7660350
  • 财政年份:
    2007
  • 资助金额:
    $ 2.75万
  • 项目类别:
Newly-licensed Driver Crashes: Causes and Remediation
新驾照司机发生车祸:原因与补救措施
  • 批准号:
    7895539
  • 财政年份:
    2007
  • 资助金额:
    $ 2.75万
  • 项目类别:
A MODEL FOR PREDICTION CTDS DUE TO REPETITIVE LOADING
重复加载导致的 CTDS 预测模型
  • 批准号:
    6044106
  • 财政年份:
    1999
  • 资助金额:
    $ 2.75万
  • 项目类别:
MODELS OF AGING--THE MICROSTRUCTURE OF COGNITION
衰老模型——认知的微观结构
  • 批准号:
    2054091
  • 财政年份:
    1994
  • 资助金额:
    $ 2.75万
  • 项目类别:
MODELS OF AGING--THE MICROSTRUCTURE OF COGNITION
衰老模型——认知的微观结构
  • 批准号:
    2054093
  • 财政年份:
    1994
  • 资助金额:
    $ 2.75万
  • 项目类别:
MODELS OF AGING--THE MICROSTRUCTURE OF COGNITION
衰老模型——认知的微观结构
  • 批准号:
    2054092
  • 财政年份:
    1994
  • 资助金额:
    $ 2.75万
  • 项目类别:
A SINGLE PROCESS THEORY OF VISUAL SEARCH
视觉搜索的单一过程理论
  • 批准号:
    3377767
  • 财政年份:
    1985
  • 资助金额:
    $ 2.75万
  • 项目类别:

相似海外基金

Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
  • 批准号:
    23K11483
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
  • 批准号:
    23K11128
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
  • 批准号:
    23K03208
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
  • 批准号:
    23H01420
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
  • 批准号:
    EP/W007355/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Research Grant
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
  • 批准号:
    567961-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
  • 批准号:
    577586-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
  • 批准号:
    22K20514
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
  • 批准号:
    22K10604
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了