Sparse & Higher Order Image Restoration

基本信息

  • 批准号:
    EP/J009539/1
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

In the modern society we encounter digital images in many different situations: from everyday life, where analogue cameras have long been replaced by digital ones, to their professional use in medicine, earth sciences, arts, and security applications. Examples of medical imaging tools are MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), CT (computed tomography) for imaging the brain and inner organs like the human heart. These imaging tools usually produce noisy or incomplete image data. Hence, before they can be evaluated by doctors, they have to be processed. Keywords in this context are image denoising, image deblurring, image decomposition and image inpainting.One of the most successful image processing approaches are so-called partial differential equations (PDEs) and variational models. Given a noisy image, its processed (denoised) version is computed as a solution of a PDE or as a minimiser of a functional (variational model). Both of these processes are regularising the given image and herewith eliminate noise or fill missing parts in images. Favourable imaging approaches are doing so by eliminating high-frequency features (noise) while preserving or even enhancing low-frequency features (object boundaries, edges).In this project we propose to focus on one of the most effective while least understood classes in this context: methods that involve expressions of high, especially fourth, differential order. Higher-order methods by far outperform standard image restoration algorithms in terms of the high-quality visual results they produce. Bringing together the expertises from different fields of mathematics, among them applied PDEs, variational calculus, geometric measure theory and modern numerical analysis, we attempt to answer and complement some of the many open questions evolving around higher-order imaging models.The punchline of the project is a specific image processing task called image inpainting. Inpainting denotes the process of filling-in missing parts in an image using the information gained from the intact part of the image. It is essentially a type of interpolation and has applications, e.g., in the restoration of old photographs and paintings, text erasing (e.g., removal of dates in digital images or subtitles in a movie), or special effects like object disappearance. Adding additional geometrical constraints to this interpolation process, higher-order methods are able to address some of the shortcomings of standard inpainting methods like the ability to restore contents in very large gaps in an image.In order to have effective and reliable higher-order inpainting approaches it is inevitable to analyse their mathematical properties thoroughly. Questions to answer are: what kind of solutions do these approaches produce? What are the characteristic features (like regularity and sparseness) they promote in the resulting image? Which terms in the mathematical setup do we have to manipulate and how, to stir the interpolation process to our liking?Another issue is their numerical implementation. In fact, the unfortunate reason why these models are not accommodated in applied tasks and standard imaging software is that their solution with current numerical algorithms is still expensive and far away from real-time user interaction.This project addresses the development, analysis and efficient numerical implementation of imaging models using PDEs and variational formulations of high-differential order with sophisticated tools from modern applied mathematics.
在现代社会中,我们在许多不同的情况下遇到数字图像:从日常生活中,模拟相机早已被数字相机取代,到医学,地球科学,艺术和安全应用中的专业用途。医学成像工具的示例是MRI(磁共振成像)、PET(正电子发射断层扫描)、CT(计算机断层扫描),用于对大脑和内部器官(如人类心脏)进行成像。这些成像工具通常产生有噪声或不完整的图像数据。因此,在医生对其进行评估之前,必须对其进行处理。图像去噪、图像去模糊、图像分解和图像修复是图像处理中最成功的方法之一,其中偏微分方程(PDE)和变分模型是图像处理中最常用的方法之一。给定噪声图像,其处理(去噪)版本被计算为PDE的解或泛函(变分模型)的最小值。这两个过程都是对给定图像进行正则化,从而消除图像中的噪声或填充图像中的缺失部分。最常用的成像方法是通过消除高频特征(噪声),同时保留甚至增强低频特征(物体边界,边缘)来实现的。在这个项目中,我们建议专注于最有效但最不了解的类之一:涉及高,特别是四阶微分表达式的方法。高阶方法在它们产生的高质量视觉结果方面远远优于标准图像恢复算法。汇集了来自不同数学领域的专业知识,其中包括应用偏微分方程,变分法,几何测度理论和现代数值分析,我们试图回答和补充围绕高阶成像模型发展的许多开放性问题。该项目的重点是一个特定的图像处理任务,称为图像修复。修复是指利用图像完整部分的信息来填补图像中缺失部分的过程。它本质上是一种插值,并具有应用,例如,在旧照片和绘画的修复中,文本擦除(例如,去除数字图像中的日期或电影中的字幕),或者像对象消失这样的特殊效果。高阶修复方法通过在插值过程中增加额外的几何约束,能够解决标准修复方法的一些缺点,例如无法恢复图像中非常大的间隙中的内容。为了获得有效可靠的高阶修复方法,不可避免地要彻底分析它们的数学特性。需要回答的问题是:这些方法产生了什么样的解决方案?它们在生成的图像中促进了哪些特征(如规则性和稀疏性)?我们必须操纵数学设置中的哪些项,以及如何按照我们的喜好搅动插值过程?另一个问题是它们的数值实现。事实上,不幸的是,为什么这些模型不适应于应用任务和标准成像软件是,他们的解决方案与当前的数值算法仍然是昂贵的,远离实时用户interaction.This项目地址的发展,分析和有效的数值实现成像模型使用偏微分方程和变分制剂的高微分阶复杂的工具,从现代应用数学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solving inverse problems using data-driven models
  • DOI:
    10.1017/s0962492919000059
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    14.2
  • 作者:
    Arridge, Simon;Maass, Peter;Schonlieb, Carola-Bibiane
  • 通讯作者:
    Schonlieb, Carola-Bibiane
Geometric Science of Information
信息几何科学
  • DOI:
    10.1007/978-3-642-40020-9_45
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benning M
  • 通讯作者:
    Benning M
Mini-Workshop: Deep Learning and Inverse Problems
迷你研讨会:深度学习与反问题
  • DOI:
    10.4171/owr/2018/11
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arridge S
  • 通讯作者:
    Arridge S
A primal-dual approach for a total variation Wasserstein flow
总变分 Wasserstein 流的原对偶方法
  • DOI:
    10.48550/arxiv.1305.5368
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benning M
  • 通讯作者:
    Benning M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carola-Bibiane Schönlieb其他文献

On the caveats of AI autophagy
关于人工智能自噬的注意事项
  • DOI:
    10.1038/s42256-025-00984-1
  • 发表时间:
    2025-02-10
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Xiaodan Xing;Fadong Shi;Jiahao Huang;Yinzhe Wu;Yang Nan;Sheng Zhang;Yingying Fang;Michael Roberts;Carola-Bibiane Schönlieb;Javier Del Ser;Guang Yang
  • 通讯作者:
    Guang Yang
Can generative AI replace immunofluorescent staining processes? A comparison study of synthetically generated cellpainting images from brightfield
  • DOI:
    10.1016/j.compbiomed.2024.109102
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaodan Xing;Siofra Murdoch;Chunling Tang;Giorgos Papanastasiou;Jan Cross-Zamirski;Yunzhe Guo;Xianglu Xiao;Carola-Bibiane Schönlieb;Yinhai Wang;Guang Yang
  • 通讯作者:
    Guang Yang
Source-detector trajectory optimization for FOV extension in dental CBCT imaging
  • DOI:
    10.1016/j.csbj.2024.11.010
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    S M Ragib Shahriar Islam;Ander Biguri;Claudio Landi;Giovanni Di Domenico;Benedikt Schneider;Pascal Grün;Cristina Sarti;Ramona Woitek;Andrea Delmiglio;Carola-Bibiane Schönlieb;Dritan Turhani;Gernot Kronreif;Wolfgang Birkfellner;Sepideh Hatamikia
  • 通讯作者:
    Sepideh Hatamikia
Radiological tumour classification across imaging modality and histology
不同成像方式和组织学的放射学肿瘤分类
  • DOI:
    10.1038/s42256-021-00377-0
  • 发表时间:
    2021-08-09
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Jia Wu;Chao Li;Michael Gensheimer;Sukhmani Padda;Fumi Kato;Hiroki Shirato;Yiran Wei;Carola-Bibiane Schönlieb;Stephen John Price;David Jaffray;John Heymach;Joel W. Neal;Billy W. Loo;Heather Wakelee;Maximilian Diehn;Ruijiang Li
  • 通讯作者:
    Ruijiang Li
A linear transportation math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e545" class="math"msupmrowmi mathvariant="normal"L/mi/mrowmrowmip/mi/mrow/msup/math distance for pattern recognition
用于模式识别的线性传输数学距离
  • DOI:
    10.1016/j.patcog.2023.110080
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Oliver M. Crook;Mihai Cucuringu;Tim Hurst;Carola-Bibiane Schönlieb;Matthew Thorpe;Konstantinos C. Zygalakis
  • 通讯作者:
    Konstantinos C. Zygalakis

Carola-Bibiane Schönlieb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carola-Bibiane Schönlieb', 18)}}的其他基金

Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
  • 批准号:
    EP/Y037308/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
Combining Knowledge And Data Driven Approaches to Inverse Imaging Problems
结合知识和数据驱动的方法来解决逆向成像问题
  • 批准号:
    EP/V029428/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Fellowship
Cambridge Mathematics of Information in Healthcare (CMIH)
剑桥医疗保健信息数学 (CMIH)
  • 批准号:
    EP/T017961/1
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
PET++: Improving Localisation, Diagnosis and Quantification in Clinical and Medical PET Imaging with Randomised Optimisation
PET:通过随机优化改善临床和医学 PET 成像的定位、诊断和量化
  • 批准号:
    EP/S026045/1
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
Robust and Efficient Analysis Approaches of Remote Imagery for Assessing Population and Forest Health in India
用于评估印度人口和森林健康的稳健有效的遥感影像分析方法
  • 批准号:
    EP/T003553/1
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging
EPSRC 多模态临床影像数学和统计分析中心
  • 批准号:
    EP/N014588/1
  • 财政年份:
    2016
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
Efficient computational tools for inverse imaging problems
用于逆成像问题的高效计算工具
  • 批准号:
    EP/M00483X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
  • 批准号:
    DP240100963
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Projects
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
  • 批准号:
    2311848
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CEDAR--Higher-Order Concentric Gravity Waves in the Northern Winter Thermosphere and Ionosphere
合作研究:CEDAR——北方冬季热层和电离层的高阶同心重力波
  • 批准号:
    2407263
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Mathematical study of topologies for higher-order topological insulators
高阶拓扑绝缘体拓扑的数学研究
  • 批准号:
    23K12966
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multivariable and Higher order extensions of discrete Painlev\'e equaitons
离散 Painlev 方程的多变量和高阶扩展
  • 批准号:
    23K03173
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional and behavioral dissection of higher order thalamocortical circuits in schizophrenia.
精神分裂症高阶丘脑皮质回路的功能和行为解剖。
  • 批准号:
    10633810
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
Formal verification of Higher-order probabilistic programs with proof assistant
使用证明助手对高阶概率程序进行形式化验证
  • 批准号:
    23KJ0905
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Computation between posterior parietal cortex and its higher order thalamic target during multisensory processing and conflict
多感觉处理和冲突期间后顶叶皮层与其高阶丘脑目标之间的计算
  • 批准号:
    22KJ3082
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mechano-geometrical cell interface for generating hiPSC derived higher order gastruloid
用于生成 hiPSC 衍生的高阶原肠胚的机械几何细胞接口
  • 批准号:
    23K17205
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Roles of higher-order visual thalamus in state-dependent corticocortical communication
高阶视觉丘脑在状态依赖性皮质通讯中的作用
  • 批准号:
    10892334
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了