PET++: Improving Localisation, Diagnosis and Quantification in Clinical and Medical PET Imaging with Randomised Optimisation

PET:通过随机优化改善临床和医学 PET 成像的定位、诊断和量化

基本信息

  • 批准号:
    EP/S026045/1
  • 负责人:
  • 金额:
    $ 104.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Positron Emission Tomography (PET) is a pillar of modern diagnostic imaging, allowing non-invasive, sensitive and specific detection of functional changes in several disease types. In endocrinology, the precise localisation of small functioning tumours of the pituitary or adrenal glands is crucial for planning curative surgery or radiotherapy. While PET imaging shows good promise for this task, initial studies suggest significant room for improvement, with improved PET imaging and subsequent more accurate localisation opening up the possibility for more adapted therapies. In dementia, the accurate quantification of PET images is key for the early detection of disease. Improved PET imaging may allow for earlier detection of dementia while asymptomatic and increased sensitivity to assess and monitor treatment once appropriate drugs have been found. In this project mathematicians team up with researchers and clinicians from Addenbrooke's Hospital Cambridge, Dementias Platform UK (DPUK), GE Healthcare and University College London (UCL) for improved diagnosis and localization for tumours in endocrinology and earlier diagnosis of dementia with improved PET imaging. In particular, we investigate modern PET reconstruction approaches based on advanced mathematical methods to increase the PET image resolution and contrast, while keeping computational complexity low, thereby directly benefiting clinical workflow.
正电子发射断层扫描(PET)是现代诊断成像的支柱,可以对多种疾病类型的功能变化进行非侵入性、灵敏和特异性的检测。在内分泌学中,对垂体或肾上腺的小的功能性肿瘤的精确定位对于计划根治性手术或放射治疗是至关重要的。虽然PET成像显示了这项任务的良好前景,但初步研究表明还有很大的改进空间,改进的PET成像和随后更准确的定位为更适应的治疗打开了可能性。在痴呆症中,PET图像的准确量化是早期发现疾病的关键。改进的PET成像可以在无症状的情况下更早地发现痴呆症,并提高敏感度,以便在找到合适的药物后评估和监测治疗。在这个项目中,数学家与来自剑桥Addenbrooke医院、Dementias Platform UK(DPUK)、GE Healthcare和伦敦大学学院(UCL)的研究人员和临床医生合作,通过改进的PET成像改进内分泌学肿瘤的诊断和定位,以及痴呆症的早期诊断。特别是,我们研究了基于先进数学方法的现代PET重建方法,以提高PET图像的分辨率和对比度,同时保持较低的计算复杂度,从而直接受益于临床工作流程。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays.
  • DOI:
    10.1016/j.patcog.2021.108274
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Aviles-Rivero AI;Sellars P;Schönlieb CB;Papadakis N
  • 通讯作者:
    Papadakis N
Choose Your Path Wisely: Gradient Descent in a Bregman Distance Framework
  • DOI:
    10.1137/20m1357500
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Benning;M. Betcke;Matthias Joachim Ehrhardt;C. Schonlieb
  • 通讯作者:
    Martin Benning;M. Betcke;Matthias Joachim Ehrhardt;C. Schonlieb
Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence.
通过人工智能中的隐私保护协作推进 COVID-19 诊断。
  • DOI:
    10.17863/cam.79503
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bai X
  • 通讯作者:
    Bai X
Solving inverse problems using data-driven models
  • DOI:
    10.1017/s0962492919000059
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    14.2
  • 作者:
    Arridge, Simon;Maass, Peter;Schonlieb, Carola-Bibiane
  • 通讯作者:
    Schonlieb, Carola-Bibiane
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carola-Bibiane Schönlieb其他文献

Can generative AI replace immunofluorescent staining processes? A comparison study of synthetically generated cellpainting images from brightfield
  • DOI:
    10.1016/j.compbiomed.2024.109102
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaodan Xing;Siofra Murdoch;Chunling Tang;Giorgos Papanastasiou;Jan Cross-Zamirski;Yunzhe Guo;Xianglu Xiao;Carola-Bibiane Schönlieb;Yinhai Wang;Guang Yang
  • 通讯作者:
    Guang Yang
On the caveats of AI autophagy
关于人工智能自噬的注意事项
  • DOI:
    10.1038/s42256-025-00984-1
  • 发表时间:
    2025-02-10
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Xiaodan Xing;Fadong Shi;Jiahao Huang;Yinzhe Wu;Yang Nan;Sheng Zhang;Yingying Fang;Michael Roberts;Carola-Bibiane Schönlieb;Javier Del Ser;Guang Yang
  • 通讯作者:
    Guang Yang
Source-detector trajectory optimization for FOV extension in dental CBCT imaging
  • DOI:
    10.1016/j.csbj.2024.11.010
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    S M Ragib Shahriar Islam;Ander Biguri;Claudio Landi;Giovanni Di Domenico;Benedikt Schneider;Pascal Grün;Cristina Sarti;Ramona Woitek;Andrea Delmiglio;Carola-Bibiane Schönlieb;Dritan Turhani;Gernot Kronreif;Wolfgang Birkfellner;Sepideh Hatamikia
  • 通讯作者:
    Sepideh Hatamikia
Radiological tumour classification across imaging modality and histology
不同成像方式和组织学的放射学肿瘤分类
  • DOI:
    10.1038/s42256-021-00377-0
  • 发表时间:
    2021-08-09
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Jia Wu;Chao Li;Michael Gensheimer;Sukhmani Padda;Fumi Kato;Hiroki Shirato;Yiran Wei;Carola-Bibiane Schönlieb;Stephen John Price;David Jaffray;John Heymach;Joel W. Neal;Billy W. Loo;Heather Wakelee;Maximilian Diehn;Ruijiang Li
  • 通讯作者:
    Ruijiang Li
A linear transportation math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e545" class="math"msupmrowmi mathvariant="normal"L/mi/mrowmrowmip/mi/mrow/msup/math distance for pattern recognition
用于模式识别的线性传输数学距离
  • DOI:
    10.1016/j.patcog.2023.110080
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Oliver M. Crook;Mihai Cucuringu;Tim Hurst;Carola-Bibiane Schönlieb;Matthew Thorpe;Konstantinos C. Zygalakis
  • 通讯作者:
    Konstantinos C. Zygalakis

Carola-Bibiane Schönlieb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carola-Bibiane Schönlieb', 18)}}的其他基金

Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
  • 批准号:
    EP/Y037308/1
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Research Grant
Combining Knowledge And Data Driven Approaches to Inverse Imaging Problems
结合知识和数据驱动的方法来解决逆向成像问题
  • 批准号:
    EP/V029428/1
  • 财政年份:
    2021
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Fellowship
Cambridge Mathematics of Information in Healthcare (CMIH)
剑桥医疗保健信息数学 (CMIH)
  • 批准号:
    EP/T017961/1
  • 财政年份:
    2020
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Research Grant
Robust and Efficient Analysis Approaches of Remote Imagery for Assessing Population and Forest Health in India
用于评估印度人口和森林健康的稳健有效的遥感影像分析方法
  • 批准号:
    EP/T003553/1
  • 财政年份:
    2019
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Research Grant
EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging
EPSRC 多模态临床影像数学和统计分析中心
  • 批准号:
    EP/N014588/1
  • 财政年份:
    2016
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Research Grant
Efficient computational tools for inverse imaging problems
用于逆成像问题的高效计算工具
  • 批准号:
    EP/M00483X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Research Grant
Sparse & Higher Order Image Restoration
  • 批准号:
    EP/J009539/1
  • 财政年份:
    2012
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Research Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Continuing Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Fellowship
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Collaborative R&D
Improving Resilience of MCDI for Water Supply in Remote Communities
提高偏远社区供水的 MCDI 弹性
  • 批准号:
    DP240101469
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Discovery Projects
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
  • 批准号:
    IE230100103
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Early Career Industry Fellowships
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
  • 批准号:
    MR/Y503381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Research Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Continuing Grant
ERI: Characterizing and improving algae-derived biofuel droplet burning
ERI:表征和改善藻类生物燃料液滴燃烧
  • 批准号:
    2301490
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Standard Grant
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
  • 批准号:
    2410889
  • 财政年份:
    2024
  • 资助金额:
    $ 104.67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了