Efficient computational tools for inverse imaging problems
用于逆成像问题的高效计算工具
基本信息
- 批准号:EP/M00483X/1
- 负责人:
- 金额:$ 67.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A photograph taken with current state-of-the-art digital cameras has between 10 to 20 million pixels. Some cameras have up to 41 million sensor pixels. Despite advances in sensor and optical technology, technically perfect photographs are still elusive in demanding conditions. In low light even the best cameras produce noisy images. Casual photographers cannot always hold the camera steady, and the photograph becomes blurry despite advanced shake reduction technologies. We are thus presented with the challenge of improving the photographs in post-processing. This would desirably be an automated process, based on mathematically well understood models that can be relied upon.The difficulty with real photographs of tens of millions of pixels is that the resulting optimisation problems -- the task of finding the best enhanced image according to a model -- are huge, and computationally very intensive. Moreover, imaging problems generally computationally very intensive. State-of-the-art image processing techniques based on mathematical principles are only up to processing small images in real time. Further, choosing the right parameters for the models can be difficult. Parameter choice can be facilitated, but again in computationally very intensive ways. The question now is, can we design faster optimisation algorithms that would make this and other image processing tasks tractable for real high-resolution photographs?The objective of the proposed project is to develop optimisation algorithms that are up to this task. The focus of the project is on general methods that will be applicable to a wide variety of image processing tasks and general big data problems. Besides photography, we will apply the developed tools to problems from biology and medicine, involving magnetic resonance imaging and microscopy.
使用当前最先进的数码相机拍摄的照片具有 10 至 2000 万像素。有些相机的传感器像素高达 4100 万。尽管传感器和光学技术取得了进步,但在苛刻的条件下,技术上完美的照片仍然难以实现。在弱光下,即使是最好的相机也会产生嘈杂的图像。休闲摄影师无法始终稳定地握住相机,尽管采用了先进的防抖技术,照片还是会变得模糊。因此,我们面临着在后期处理中改进照片的挑战。这最好是一个自动化的过程,基于数学上易于理解的模型。数千万像素的真实照片的困难在于,由此产生的优化问题——根据模型找到最佳增强图像的任务——是巨大的,并且计算量非常大。此外,成像问题通常计算量非常大。基于数学原理的最先进的图像处理技术只能实时处理小图像。此外,为模型选择正确的参数可能很困难。可以促进参数选择,但同样以计算量非常大的方式进行。现在的问题是,我们能否设计出更快的优化算法,使该任务和其他图像处理任务能够处理真正的高分辨率照片?该项目的目标是开发适合该任务的优化算法。该项目的重点是适用于各种图像处理任务和一般大数据问题的通用方法。除了摄影之外,我们还将把开发的工具应用于生物学和医学问题,包括磁共振成像和显微镜。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays.
- DOI:10.1016/j.patcog.2021.108274
- 发表时间:2022-03
- 期刊:
- 影响因子:8
- 作者:Aviles-Rivero AI;Sellars P;Schönlieb CB;Papadakis N
- 通讯作者:Papadakis N
Mini-Workshop: Deep Learning and Inverse Problems
迷你研讨会:深度学习与反问题
- DOI:10.4171/owr/2018/11
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Arridge S
- 通讯作者:Arridge S
Medical Image Computing and Computer Assisted Intervention - MICCAI 2022 - 25th International Conference, Singapore, September 18-22, 2022, Proceedings, Part III
医学图像计算和计算机辅助干预 - MICCAI 2022 - 第 25 届国际会议,新加坡,2022 年 9 月 18-22 日,会议记录,第三部分
- DOI:10.1007/978-3-031-16437-8_69
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aviles-Rivero A
- 通讯作者:Aviles-Rivero A
Solving inverse problems using data-driven models
- DOI:10.1017/s0962492919000059
- 发表时间:2019-01-01
- 期刊:
- 影响因子:14.2
- 作者:Arridge, Simon;Maass, Peter;Schonlieb, Carola-Bibiane
- 通讯作者:Schonlieb, Carola-Bibiane
Task adapted reconstruction for inverse problems
- DOI:10.1088/1361-6420/ac28ec
- 发表时间:2022-07-01
- 期刊:
- 影响因子:2.1
- 作者:Adler, Jonas;Lunz, Sebastian;Oktem, Ozan
- 通讯作者:Oktem, Ozan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carola-Bibiane Schönlieb其他文献
On the caveats of AI autophagy
关于人工智能自噬的注意事项
- DOI:
10.1038/s42256-025-00984-1 - 发表时间:
2025-02-10 - 期刊:
- 影响因子:23.900
- 作者:
Xiaodan Xing;Fadong Shi;Jiahao Huang;Yinzhe Wu;Yang Nan;Sheng Zhang;Yingying Fang;Michael Roberts;Carola-Bibiane Schönlieb;Javier Del Ser;Guang Yang - 通讯作者:
Guang Yang
Can generative AI replace immunofluorescent staining processes? A comparison study of synthetically generated cellpainting images from brightfield
- DOI:
10.1016/j.compbiomed.2024.109102 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Xiaodan Xing;Siofra Murdoch;Chunling Tang;Giorgos Papanastasiou;Jan Cross-Zamirski;Yunzhe Guo;Xianglu Xiao;Carola-Bibiane Schönlieb;Yinhai Wang;Guang Yang - 通讯作者:
Guang Yang
Source-detector trajectory optimization for FOV extension in dental CBCT imaging
- DOI:
10.1016/j.csbj.2024.11.010 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
S M Ragib Shahriar Islam;Ander Biguri;Claudio Landi;Giovanni Di Domenico;Benedikt Schneider;Pascal Grün;Cristina Sarti;Ramona Woitek;Andrea Delmiglio;Carola-Bibiane Schönlieb;Dritan Turhani;Gernot Kronreif;Wolfgang Birkfellner;Sepideh Hatamikia - 通讯作者:
Sepideh Hatamikia
Radiological tumour classification across imaging modality and histology
不同成像方式和组织学的放射学肿瘤分类
- DOI:
10.1038/s42256-021-00377-0 - 发表时间:
2021-08-09 - 期刊:
- 影响因子:23.900
- 作者:
Jia Wu;Chao Li;Michael Gensheimer;Sukhmani Padda;Fumi Kato;Hiroki Shirato;Yiran Wei;Carola-Bibiane Schönlieb;Stephen John Price;David Jaffray;John Heymach;Joel W. Neal;Billy W. Loo;Heather Wakelee;Maximilian Diehn;Ruijiang Li - 通讯作者:
Ruijiang Li
A linear transportation math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e545" class="math"msupmrowmi mathvariant="normal"L/mi/mrowmrowmip/mi/mrow/msup/math distance for pattern recognition
用于模式识别的线性传输数学距离
- DOI:
10.1016/j.patcog.2023.110080 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:7.600
- 作者:
Oliver M. Crook;Mihai Cucuringu;Tim Hurst;Carola-Bibiane Schönlieb;Matthew Thorpe;Konstantinos C. Zygalakis - 通讯作者:
Konstantinos C. Zygalakis
Carola-Bibiane Schönlieb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carola-Bibiane Schönlieb', 18)}}的其他基金
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
- 批准号:
EP/Y037308/1 - 财政年份:2024
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant
Combining Knowledge And Data Driven Approaches to Inverse Imaging Problems
结合知识和数据驱动的方法来解决逆向成像问题
- 批准号:
EP/V029428/1 - 财政年份:2021
- 资助金额:
$ 67.17万 - 项目类别:
Fellowship
Cambridge Mathematics of Information in Healthcare (CMIH)
剑桥医疗保健信息数学 (CMIH)
- 批准号:
EP/T017961/1 - 财政年份:2020
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant
PET++: Improving Localisation, Diagnosis and Quantification in Clinical and Medical PET Imaging with Randomised Optimisation
PET:通过随机优化改善临床和医学 PET 成像的定位、诊断和量化
- 批准号:
EP/S026045/1 - 财政年份:2019
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant
Robust and Efficient Analysis Approaches of Remote Imagery for Assessing Population and Forest Health in India
用于评估印度人口和森林健康的稳健有效的遥感影像分析方法
- 批准号:
EP/T003553/1 - 财政年份:2019
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant
EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging
EPSRC 多模态临床影像数学和统计分析中心
- 批准号:
EP/N014588/1 - 财政年份:2016
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing Efficient and Robust Computational Tools for Subdiffusive Transport in Poroelastic Media
开发用于多孔弹性介质中的次扩散传输的高效且鲁棒的计算工具
- 批准号:
2208590 - 财政年份:2022
- 资助金额:
$ 67.17万 - 项目类别:
Standard Grant
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9922519 - 财政年份:2019
- 资助金额:
$ 67.17万 - 项目类别:
EFFICIENT METHODS FOR CALIBRATION, CLUSTERING, VISUALIZATION AND IMPUTATION OF LARGE scRNA-seq DATA
大规模 scRNA-seq 数据校准、聚类、可视化和插补的有效方法
- 批准号:
10335252 - 财政年份:2019
- 资助金额:
$ 67.17万 - 项目类别:
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
10166816 - 财政年份:2019
- 资助金额:
$ 67.17万 - 项目类别:
EFFICIENT METHODS FOR CALIBRATION, CLUSTERING, VISUALIZATION AND IMPUTATION OF LARGE scRNA-seq DATA
大规模 scRNA-seq 数据校准、聚类、可视化和插补的有效方法
- 批准号:
9920743 - 财政年份:2019
- 资助金额:
$ 67.17万 - 项目类别:
EFFICIENT METHODS FOR CALIBRATION, CLUSTERING, VISUALIZATION AND IMPUTATION OF LARGE scRNA-seq DATA
大规模 scRNA-seq 数据校准、聚类、可视化和插补的有效方法
- 批准号:
9764594 - 财政年份:2019
- 资助金额:
$ 67.17万 - 项目类别:
Developing Efficient and Accessible Computational Tools for Poroelasticity Problems
开发有效且易于使用的计算工具来解决孔隙弹性问题
- 批准号:
1819252 - 财政年份:2018
- 资助金额:
$ 67.17万 - 项目类别:
Standard Grant
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9453828 - 财政年份:2017
- 资助金额:
$ 67.17万 - 项目类别:
Efficient and reproducible execution from data collection to processing
从数据收集到处理的高效且可重复的执行
- 批准号:
10482426 - 财政年份:2016
- 资助金额:
$ 67.17万 - 项目类别:
Efficient and reproducible execution from data collection to processing
从数据收集到处理的高效且可重复的执行
- 批准号:
10334137 - 财政年份:2016
- 资助金额:
$ 67.17万 - 项目类别:














{{item.name}}会员




