Nonlinear Stochastic Equations in Two and Three Dimensions

二维和三维非线性随机方程

基本信息

  • 批准号:
    EP/L018969/1
  • 负责人:
  • 金额:
    $ 11.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Stochastic partial differential equations (SPDE) describe the behaviour of spatially extended systems under the influence of noise. They arise naturally in various fields of applications as diverse as data mining, mathematical finance, and population dynamics and genetics.The present proposal aims to study a class of stochastic partial differential equations from statistical mechanics. Many particle models exhibit a behaviour called phase transition, where the behaviour of the system changes drastically when one changes a given system parameter beyond a critical point. It is a very exciting question to understand the behaviour of such a system near a critical point. In such a regime one expects the dynamics to be governed by a non-linear SPDE. Analytically the understanding of these equations is very challenging, because of the interaction between the rough noise term and the non-linear evolution. But this is also what gives rise to interesting phenomena. In this proposal, we aim to deepen the understanding of these equations. On the one hand we will study the behaviour under the influence of a small noise term. Then we will establish that two different kinds of particle models can indeed be described by such an SPDE.
随机偏微分方程描述了空间扩展系统在噪声影响下的行为。它们自然地出现在各种各样的应用领域,如数据挖掘,数学金融,人口动力学和genetics.This建议的目的是研究一类随机偏微分方程的统计力学。许多粒子模型表现出一种称为相变的行为,当一个给定的系统参数改变超过临界点时,系统的行为会急剧变化。理解这样一个系统在临界点附近的行为是一个非常令人兴奋的问题。在这样的制度,人们期望的动态由一个非线性SPDE。分析这些方程的理解是非常具有挑战性的,因为粗糙噪声项和非线性演化之间的相互作用。但这也是引起有趣现象的原因。在这个建议中,我们的目的是加深对这些方程的理解。一方面,我们将研究的行为的影响下,一个小的噪声项。然后,我们将建立两种不同类型的粒子模型确实可以描述这样一个SPDE。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the large time behavior of the solutions of a nonlocal ordinary differential equation with mass conservation
具有质量守恒的非局部常微分方程解的大时间行为
  • DOI:
    10.1007/s10884-015-9465-7
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Hilhorst;H. Matano;T.N. Nguyen and H. Weber
  • 通讯作者:
    T.N. Nguyen and H. Weber
Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions
Sample path large deviations for Laplacian models in $(1+1)$-dimensions
$(1 1)$ 维度中拉普拉斯模型的样本路径大偏差
Generation of Interface for Solutions of the Mass Conserved Allen--Cahn Equation
质量守恒艾伦-卡恩方程解的接口生成
Quasi-linear SPDEs in divergence form
发散形式的拟线性 SPDE
  • DOI:
    10.1007/s40072-018-0122-0
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Otto F
  • 通讯作者:
    Otto F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hendrik Weber其他文献

A Priori Bounds for the $$\Phi ^4$$ Equation in the Full Sub-critical Regime
An integrated dataset of spatiotemporal and event data in elite soccer
精英足球时空和事件数据的综合数据集
  • DOI:
    10.1038/s41597-025-04505-y
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Manuel Bassek;Robert Rein;Hendrik Weber;Daniel Memmert
  • 通讯作者:
    Daniel Memmert
Acquire Driving Scenarios Efficiently: A Framework for Prospective Assessment of Cost-Optimal Scenario Acquisition
高效获取驾驶场景:成本最优场景获取的前瞻性评估框架
How safe is automated driving? Human driver models for safety performance assessment
自动驾驶的安全性如何?
Towards a Completeness Argumentation for Scenario Concepts
场景概念的完整性论证
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Glasmacher;Hendrik Weber;Lutz Eckstein
  • 通讯作者:
    Lutz Eckstein

Hendrik Weber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Standard Grant
Analysis of stochastic chaos in nonlinear stochastic differential equations and its applications
非线性随机微分方程中的随机混沌分析及其应用
  • 批准号:
    21H01002
  • 财政年份:
    2021
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Standard Grant
General theories on nonlinear stochastic partial differential equations with renormalizations
具有重整化的非线性随机偏微分方程的一般理论
  • 批准号:
    19K14556
  • 财政年份:
    2019
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1927258
  • 财政年份:
    2018
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1815873
  • 财政年份:
    2018
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Continuing Grant
On numerical approximations of high-dimensional nonlinear parabolic partial differential equations and of backward stochastic differential equations
高维非线性抛物型偏微分方程和倒向随机微分方程的数值逼近
  • 批准号:
    381158774
  • 财政年份:
    2017
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Research Grants
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
  • 批准号:
    1939627
  • 财政年份:
    2017
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Studentship
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
  • 批准号:
    1616450
  • 财政年份:
    2016
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Standard Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1733909
  • 财政年份:
    2016
  • 资助金额:
    $ 11.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了