Modeling and Analysis of Higher-Order Switched Linear Systems

高阶切换线性系统的建模与分析

基本信息

  • 批准号:
    EP/L024152/1
  • 负责人:
  • 金额:
    $ 0.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Switched linear dynamics arise e.g. in power electronics, distributed power systems, multi-controller schemes, etc.; classically they are modeled by state space equations of the same order. However, such representations may be unnecessarily restrictive or complex: first-principles models are often of higher order, and often the modes often do not really share a common global state space. Consider e.g. distributed power systems, where the loads connected to the source have dynamics of different complexity: the state space changes depending on which loads are actually connected. Modelling such systems using a global state variable results in a more complex model than necessary, reduces modularity, and thus is done mainly to satisfy a priori-defined structural properties. I am developing a new framework where the dynamical modes are described by systems of higher-order linear constant coefficient differential equations. The system trajectories satisfy these equations on time-intervals determined by a switching signal. "Gluing conditions", i.e. algebraic equations involving the system trajectories and their derivatives before and after the switching instant, specify whether the piecewise restrictions can be concatenated to form an admissible trajectory. This framework is based on polynomial algebra and is thus conducive to the use of computer algebra techniques for modelling, analysis, and control. It is efficient in the number of variables and equations used to model a system, completely modular, and integrates perfectly with hierarchical modelling. The final aim of my research is contributing to the creation of a modelling, simulation and design environment based on a sound mathematical methodology aligned with efficient simulation techniques.In this framework I obtained encouraging results on Lyapunov stability, but much work remains to be done. I propose here to investigate 3 areas: - detection of impulsive phenomena:Gluing conditions may implicitly specify that certain trajectories cannot be concatenated smoothly at switching. This may imply instantaneous surges in the values of the system variables, which may lead to component breakdown. I aim at developing algebraic tests to ascertain when such situations may occur. These tests could be used to detect automatically the presence of impulsive behavior from the equations describing the systems, and thus would be useful for implementing my framework in a computer-aided design environment. - dissipative switched systems:I want to extend my framework to open systems and to modelling the interaction between dynamics and environment associated with energy exchange. This is a first step towards the investigation in this new framework of control techniques based on dissipation ideas for switched systems. - polynomial methods for differential variational inequalities. In many situations (e.g. in circuits, chemical processes, genetics, hydraulics, etc.) switching depends on the satisfaction of sets of algebraic inequalities, rather than on an external switching signal. Such a point of view can also efficiently overcome the combinatorial complexity associated with modelling transitions via switches. I want to investigate how to represent inequality-based transition rules in a polynomial setting; the well-posedness of solutions in a polynomial setting; the algebraic characterization of stability and the computation of Lyapunov functionals. This is a completely new area of application of polynomial algebraic techniques to the description of dynamical systems. The three areas described above constitute challenging test fields for the soundness of my approach, and offer the opportunity for developing it further in directions important for applications.
切换线性动态出现在例如电力电子、分布式电力系统、多控制器方案等中;经典地,它们由相同阶的状态空间方程建模。然而,这样的表示可能是不必要的限制或复杂的:第一原理模型通常是高阶的,并且通常模式通常不真正共享公共的全局状态空间。考虑例如分布式电力系统,其中连接到源的负载具有不同复杂性的动态:状态空间根据实际连接的负载而变化。使用全局状态变量对这样的系统进行建模会导致比必要的模型更复杂的模型,降低了模块性,因此主要是为了满足优先级定义的结构特性。我正在开发一个新的框架,其中的动态模式描述的高阶线性常系数微分方程系统。系统轨迹在由开关信号确定的时间间隔上满足这些方程。“胶合条件”,即涉及系统轨迹及其在切换时刻之前和之后的导数的代数方程,指定分段限制是否可以连接以形成容许轨迹。该框架基于多项式代数,因此有利于使用计算机代数技术进行建模、分析和控制。它在用于建模系统的变量和方程数量方面非常有效,完全模块化,并与分层建模完美集成。我的研究的最终目的是有助于创建一个建模,仿真和设计环境的基础上,一个健全的数学方法与有效的仿真techniques.In这个框架中,我得到了令人鼓舞的结果李雅普诺夫稳定性,但还有很多工作要做。我建议在这里调查3个领域:-检测脉冲现象:胶合条件可能会隐含地指定某些轨迹不能连接在切换顺利。这可能意味着系统变量值的瞬时激增,这可能导致组件故障。我的目标是开发代数测试,以确定何时可能发生这种情况。这些测试可以用来自动检测脉冲行为的存在,从方程描述的系统,因此将是有用的,在计算机辅助设计环境中实现我的框架。- 耗散切换系统:我想将我的框架扩展到开放系统,并对与能量交换相关的动态和环境之间的相互作用进行建模。这是第一步,在这个新的框架的控制技术的基础上切换系统的耗散思想的调查。- 微分变分不等式的多项式方法在许多情况下(例如,在电路,化学过程,遗传学,水力学等)切换取决于代数不等式组的满足,而不是取决于外部切换信号。这样的观点也可以有效地克服与经由开关对转换进行建模相关联的组合复杂性。我想研究如何在多项式环境中表示基于不等式的过渡规则;多项式环境中解的适定性;稳定性的代数表征和李雅普诺夫泛函的计算。这是一个全新的领域应用多项式代数技术的描述动力系统。上述三个领域构成了对我的方法的合理性具有挑战性的测试领域,并为在对应用重要的方向上进一步发展它提供了机会。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
State-Space Modeling of Two-Dimensional Vector-Exponential Trajectories
二维矢量指数轨迹的状态空间建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paolo Rapisarda其他文献

Liquid Jet Dynamics and Atomization Characteristics at Near-Field of Coaxial Type Injector
同轴式喷射器近场液体射流动力学及雾化特性
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小島千昭;Paolo Rapisarda;鷹羽浄嗣;井上智博;EDCHIHRO INOUE
  • 通讯作者:
    EDCHIHRO INOUE
酸化亜鉛系イオン感応性電界効果トランジスターのpH検出特性
氧化锌基离子敏感场效应晶体管的pH检测特性
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paolo Rapisarda;Kiyotsugu Takaba and Chiaki Kojima;田辺慎太朗,向井和哉,小池一歩,尾形健一,佐々誠彦,矢野満明
  • 通讯作者:
    田辺慎太朗,向井和哉,小池一歩,尾形健一,佐々誠彦,矢野満明
Integrated Design of Filter and Interval in Dynamic Quantizer under Communication Rate Constraint
通信速率约束下动态量化器中滤波器和间隔的集成设计
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paolo Rapisarda;Kiyotsugu Takaba and Chiaki Kojima;田辺慎太朗,向井和哉,小池一歩,尾形健一,佐々誠彦,矢野満明;Kenji Sawada;藤本龍吾;Kenji Sawada
  • 通讯作者:
    Kenji Sawada
衝突型噴射器における液膜挙動と一次微粒化特性の研究
冲击式喷油器液膜行为及一次雾化特性研究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小島千昭;Paolo Rapisarda;鷹羽浄嗣;井上智博
  • 通讯作者:
    井上智博
気液同軸噴射器の近傍における液面挙動と微粒化過程の研究
气液同轴喷射器附近液面行为及雾化过程研究
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chiaki Kojima;Paolo Rapisarda;Kiyotsugu Takaba;井上智博
  • 通讯作者:
    井上智博

Paolo Rapisarda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paolo Rapisarda', 18)}}的其他基金

Polynomial Algebraic Methods for Modeling, Analysis and Control of Distributed Physical Systems
分布式物理系统建模、分析和控制的多项式代数方法
  • 批准号:
    EP/I000909/1
  • 财政年份:
    2010
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
  • 批准号:
    24K16704
  • 财政年份:
    2024
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamic analysis of study support system for students with disabilities in higher education
高等教育残疾学生学习支持体系动态分析
  • 批准号:
    22K02331
  • 财政年份:
    2022
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
  • 批准号:
    2205434
  • 财政年份:
    2022
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Environment-Centric Analysis and Optimization for Higher-Order Languages
合作研究:SHF:中:高阶语言的以环境为中心的分析和优化
  • 批准号:
    2212537
  • 财政年份:
    2022
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Continuing Grant
Smart Damage Assessment Tool of Suspension and Cable-Stayed Bridges Through Analysis of Nonlinear Characteristics of the Structural Properties and Energy Cascading to Higher Frequencies
通过分析结构特性的非线性特性和更高频率的能量级联,实现悬索桥和斜拉桥的智能损伤评估工具
  • 批准号:
    575709-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Molecular analysis of the effects of environmental factors on higher brain function using iPSC technology and mice
使用 iPSC 技术和小鼠对环境因素对高级脑​​功能的影响进行分子分析
  • 批准号:
    22K18655
  • 财政年份:
    2022
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Higher Education Policy after COVID19: Empirical Analysis and Policy Disign with Perspectives from Behavioral Economics
新冠疫情后的高等教育政策:行为经济学视角下的实证分析与政策设计
  • 批准号:
    22K18600
  • 财政年份:
    2022
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: SHF: Medium: Environment-Centric Analysis and Optimization for Higher-Order Languages
合作研究:SHF:中:高阶语言的以环境为中心的分析和优化
  • 批准号:
    2212538
  • 财政年份:
    2022
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Continuing Grant
Analysis on singularities of higher order geometric gradient flows
高阶几何梯度流的奇点分析
  • 批准号:
    21H00990
  • 财政年份:
    2021
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER:Computational Frameworks for Higher-order Graph and Network Data Analysis
职业:高阶图和网络数据分析的计算框架
  • 批准号:
    2045555
  • 财政年份:
    2021
  • 资助金额:
    $ 0.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了