An Integrated Vision and Control Architecture for Agile Robotic Exploration

用于敏捷机器人探索的集成视觉和控制架构

基本信息

  • 批准号:
    EP/M019284/1
  • 负责人:
  • 金额:
    $ 109.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Autonomous robots, capable of independent and intelligent navigation through unknown environments, have the potential to significantly increase human safety and security. They could replace people in potentially hazardous tasks, for instance search and rescue operations in disaster zones, or surveys of nuclear/chemical installations. Vision is one of the primary senses that can enable this capability, however, visual information processing is notoriously difficult, especially at speeds required for fast moving robots, and in particular where low weight, power dissipation and cost of the system are of concern. Conventional hardware and algorithms are not up to the task. The proposal here is to tightly integrate novel sensing and processing hardware, together with vision, navigation and control algorithms, to enable the next generation of autonomous robots.At the heart of the system will be a device known as a 'vision chip'. This bespoke integrated circuit differs from a conventional image sensor, including a processor with each pixel. This will offer unprecedented performance. The massively parallel processor array will be programmed to pre-process images, passing higher-level feature information upstream to vision tracking algorithms and the control system. Feature extraction at pixel level results in an extremely efficient and high speed throughput of information. Another feature of the new vision chip will be the measurement of 'time of flight' data in each pixel. This will allow the distance to a feature to be extracted and combined with the image plane data for vision tracking, simplifying and speeding up the real-time state estimation and mapping capabilities. Vision algorithms will be developed to make the most optimal use of this novel hardware technology.This project will not only develop a unique vision processing system, but will also tightly integrate the control system design. Vision and control systems have been traditionally developed independently, with the downstream flow of information from sensor through to motor control. In our system, information flow will be bidirectional. Control system parameters will be passed to the image sensor itself, guiding computational effort and reducing processing overheads. For example a rotational demand passed into the control system, will not only result in control actuation for vehicle movement, but will also result in optic tracking along the same path. A key component of the project will therefore be the management and control of information across all three layers: sensing, visual perception and control. Information share will occur at multiple rates and may either be scheduled or requested. Shared information and distributed computation will provide a breakthrough in control capabilities for highly agile robotic systems.Whilst applicable to a very wide range of disciplines, our system will be tested in the demanding field of autonomous aerial robotics. We will integrate the new vision sensors onboard an unmanned air vehicle (UAV), developing a control system that will fully exploit the new tracking capabilities. This will serve as a demonstration platform for the complete vision system, incorporating nonlinear algorithms to control the vehicle through agile manoeuvres and rapidly changing trajectories. Although specific vision tracking and control algorithms will be used for the project, the hardware itself and system architecture will be applicable to a very wide range of tasks. Any application that is currently limited by tracking capabilities, in particular when combined with a rapid, demanding control challenge would benefit from this work. We will demonstrate a step change in agile, vision-based control of UAVs for exploration, and in doing so develop an architecture which will have benefits in fields as diverse as medical robotics and industrial production.
自主机器人能够在未知环境中独立和智能地导航,有可能大大提高人类的安全和保障。它们可以代替人们执行潜在危险的任务,例如在灾区进行搜索和救援行动,或调查核/化学设施。视觉是能够实现这种能力的主要感官之一,然而,视觉信息处理是非常困难的,特别是在快速移动机器人所需的速度下,特别是在系统的低重量、功耗和成本受到关注的情况下。传统的硬件和算法无法胜任这项任务。这里的提议是将新型传感和处理硬件与视觉、导航和控制算法紧密集成,以实现下一代自主机器人。该系统的核心将是一种称为“视觉芯片”的设备。这种定制的集成电路不同于传统的图像传感器,包括每个像素的处理器。这将提供前所未有的性能。大规模并行处理器阵列将被编程为预处理图像,将更高级别的特征信息上游传递给视觉跟踪算法和控制系统。在像素级的特征提取导致非常有效和高速的信息吞吐量。新视觉芯片的另一个功能是测量每个像素中的“飞行时间”数据。这将允许提取到特征的距离并将其与图像平面数据相结合以进行视觉跟踪,从而简化和加速实时状态估计和映射能力。本项目将开发视觉算法,以最大限度地利用这一新的硬件技术。本项目不仅将开发独特的视觉处理系统,还将紧密结合控制系统设计。传统上,视觉和控制系统是独立开发的,下游的信息流从传感器到电机控制。在我们的系统中,信息流将是双向的。控制系统参数将被传递到图像传感器本身,指导计算工作并减少处理开销。例如,一个旋转指令传递到控制系统,不仅会导致车辆运动的控制驱动,而且会导致光学跟踪沿着同一路径。因此,该项目的一个关键组成部分将是跨所有三个层面的信息管理和控制:传感,视觉感知和控制。信息共享将以多种速率进行,并且可以是预定的或请求的。共享信息和分布式计算将为高度敏捷的机器人系统的控制能力提供突破。同时适用于非常广泛的学科,我们的系统将在要求苛刻的自主航空机器人领域进行测试。我们将在无人机(UAV)上集成新的视觉传感器,开发一种控制系统,以充分利用新的跟踪能力。这将作为完整视觉系统的演示平台,结合非线性算法,通过敏捷的机动和快速变化的轨迹来控制车辆。尽管该项目将使用特定的视觉跟踪和控制算法,但硬件本身和系统架构将适用于非常广泛的任务。任何目前受跟踪能力限制的应用,特别是当与快速、苛刻的控制挑战相结合时,都将受益于这项工作。我们将展示用于探索的无人机的敏捷,基于视觉的控制的一步变化,并在此过程中开发一种架构,该架构将在医疗机器人和工业生产等不同领域受益。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Live Demonstration: CNN Inference on the Focal Plane with a Pixel Processor Array
现场演示:使用像素处理器阵列在焦平面上进行 CNN 推理
  • DOI:
    10.1109/iscas45731.2020.9180959
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carey S
  • 通讯作者:
    Carey S
Sand Castle Summation For Pixel Processor Arrays
像素处理器阵列的沙堡求和
  • DOI:
    10.1109/cnna49188.2021.9610764
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bose L
  • 通讯作者:
    Bose L
Pixel Processor Arrays For Low Latency Gaze Estimation
用于低延迟注视估计的像素处理器阵列
  • DOI:
    10.1109/vrw55335.2022.00336
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bose L
  • 通讯作者:
    Bose L
Live Demonstration: Digit Recognition on Pixel Processor Arrays
现场演示:像素处理器阵列上的数字识别
  • DOI:
    10.1109/cvprw.2019.00218
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bose L
  • 通讯作者:
    Bose L
Lessons Learned the Hard Way
惨痛的教训
  • DOI:
    10.1109/iscas45731.2020.9180983
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Delbruck T
  • 通讯作者:
    Delbruck T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Piotr Dudek其他文献

Mapping Image Transformations Onto Pixel Processor Arrays
将图像转换映射到像素处理器阵列上
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laurie Bose;Piotr Dudek
  • 通讯作者:
    Piotr Dudek

Piotr Dudek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Piotr Dudek', 18)}}的其他基金

On-Sensor Computer Vision
传感器计算机视觉
  • 批准号:
    EP/Y023048/1
  • 财政年份:
    2024
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Research Grant
Biologically inspired transportation: a distributed intelligent conveyor
受生物启发的运输:分布式智能输送机
  • 批准号:
    EP/H023623/1
  • 财政年份:
    2011
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Research Grant
Fine-Grain Parallel Cellular Processor Arrays in 3D Silicon Technologies
3D 硅技术中的细粒度并行蜂窝处理器阵列
  • 批准号:
    EP/H017453/1
  • 财政年份:
    2009
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Research Grant
Brain-inspired architectures for next-generation microelectronic systems
下一代微电子系统的类脑架构
  • 批准号:
    EP/G035806/1
  • 财政年份:
    2009
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Research Grant

相似国自然基金

老年人群视障风险VISION管控模式构建与实证研究
  • 批准号:
    71974198
  • 批准年份:
    2019
  • 资助金额:
    48.5 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase I: Low-Cost, Vision-Enhanced, High-Efficiency Heat Cable Control System
SBIR 第一阶段:低成本、视觉增强、高效热电缆控制系统
  • 批准号:
    2224907
  • 财政年份:
    2023
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Standard Grant
Development of a strabismic vision support wearable system with video presentation based on feedback control
基于反馈控制的视频演示斜视视觉支持可穿戴系统的开发
  • 批准号:
    22K12923
  • 财政年份:
    2022
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intelligent Control of Drying with Machine Vision and Machine Learning
利用机器视觉和机器学习智能控制干燥
  • 批准号:
    RGPIN-2019-06081
  • 财政年份:
    2022
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Vision-Based Motion Estimation and Control for Multiple and Complex Robots
多个复杂机器人的基于视觉的统一运动估计和控制
  • 批准号:
    2212051
  • 财政年份:
    2022
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Standard Grant
Intelligent Control of Drying with Machine Vision and Machine Learning
利用机器视觉和机器学习智能控制干燥
  • 批准号:
    RGPIN-2019-06081
  • 财政年份:
    2021
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Discovery Grants Program - Individual
Cooperative Control Robotics and Computer Vision: Development of Semi-Autonomous Temporal Bone and Skull Base Surgery
协作控制机器人和计算机视觉:半自主颞骨和颅底手术的发展
  • 批准号:
    10283480
  • 财政年份:
    2021
  • 资助金额:
    $ 109.37万
  • 项目类别:
Vision-guided robot control for automated material handling and inspection
用于自动化物料搬运和检测的视觉引导机器人控制
  • 批准号:
    563797-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 109.37万
  • 项目类别:
    University Undergraduate Student Research Awards
NuSORT - Innovative Application of Machine Vision and Robotic Control for Nuclear Waste Sorting and Segregation
NuSORT - 机器视觉和机器人控制在核废料分类和隔离中的创新应用
  • 批准号:
    10004561
  • 财政年份:
    2021
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Small Business Research Initiative
Cooperative Control Robotics and Computer Vision: Development of Semi-Autonomous Temporal Bone and Skull Base Surgery
协作控制机器人和计算机视觉:半自主颞骨和颅底手术的发展
  • 批准号:
    10631972
  • 财政年份:
    2021
  • 资助金额:
    $ 109.37万
  • 项目类别:
Robot arm and hand manipulation using vision-guided motion control directed by human gestures
使用由人类手势指导的视觉引导运动控制的机器人手臂和手部操作
  • 批准号:
    RGPIN-2016-06365
  • 财政年份:
    2021
  • 资助金额:
    $ 109.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了