Spinterface Engineering for Efficient Device Operation (SPEEDO)
用于高效设备操作的 Spinterface 工程 (SPEEDO)
基本信息
- 批准号:EP/N014685/1
- 负责人:
- 金额:$ 12.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular spintronics is an emerging research field that seeks to build on the enormous successes of conventional spintronics (e.g. read-heads in all modern hard disk drives) and organic electronics (e.g. flexible displays) to produce devices such as organic spin transistors, flexible memory elements, and spin LEDs. Organic semiconducting molecules (OSCs) are mainly composed of light elements such as C, H, N, and O which means that they interact very weakly with an electron's spin--this is the fundamental property that spintronic technologies manipulate in addition to electronic charge. As such, OSCs are considered promising materials for use in devices in which it is desirable to pass spin-polarised electrons across an interface with a ferromagnetic material (spin injection) or to transport them from one ferromagnetic electrode to another (spin transport). Other beneficial properties of OSCs include their physical and chemical flexibility and the ability to produce them at low cost in large quantities.To overcome the poor and irreproducible performance demonstrated by first-generation organic devices, it has become increasingly clear that a much better understanding of the interaction between OSCs and the ferromagnetic substrates that support them is needed. The chemical interaction at this organic/ferromagnetic interface, or 'spinterface', can lead to undesirable effects such as molecular distortion, a reduction in spin polarisation, and the appearance of hybridised electronic states. The aim of this project is to provide this missing knowledge by using a beam of excited helium atoms as a very sensitive probe of surface electronic and magnetic properties. The surface sensitivity of this approach means that it is ideal for studying the adsorption of molecules on surfaces making its application to organic spintronics both novel and timely. In addition to common OSCs such as C60 and the metal phthalocyanines, more exotic 'double-decker' molecules that have a two-layer structure will also be investigated. Theory predicts that these molecules could act as very efficient spin filters however this needs confirming experimentally.The helium technique will also enable spinterfaces to be engineered with properties that are beneficial to device performance. For example, as we have shown before, the adsorption of simple atoms such as H and B can passivate the electronic states found at the surface of a ferromagnetic material such as Fe3O4 and recover desirable bulk properties such as half-metallicity. Based on these optimised spinterfaces, prototypical devices such as organic spin valves and magnetic tunnel junctions will be fabricated with the aim of demonstrating enhanced device performance. A novel method vacuum bonding process will also be developed to allow high-quality interfaces to be incorporated at both device electrodes. This opens up the possibility of preparing organic devices in which both the top and bottom electrodes consist of ferromagnetic oxides, a concept that has not been satisfactorily demonstrated to date.
分子自旋电子学是一个新兴的研究领域,旨在以传统自旋电子学(例如所有现代硬盘驱动器中的读取头)和有机电子学(例如柔性显示器)的巨大成功为基础,生产有机自旋晶体管、柔性存储元件和自旋 LED 等器件。有机半导体分子 (OSC) 主要由 C、H、N 和 O 等轻元素组成,这意味着它们与电子自旋的相互作用非常弱——这是自旋电子技术除了电子电荷之外操纵的基本属性。因此,OSC 被认为是一种很有前途的材料,可用于需要将自旋极化电子穿过与铁磁材料的界面(自旋注入)或将它们从一个铁磁电极传输到另一个铁磁电极(自旋传输)的设备。 OSC 的其他有益特性包括其物理和化学灵活性以及以低成本大量生产 OSC 的能力。为了克服第一代有机器件表现出的较差且不可重复的性能,越来越清楚的是,需要更好地了解 OSC 和支持它们的铁磁基板之间的相互作用。这种有机/铁磁界面或“自旋界面”处的化学相互作用可能导致不良效应,例如分子畸变、自旋极化减少以及杂化电子态的出现。该项目的目的是通过使用激发氦原子束作为表面电子和磁性的非常灵敏的探针来提供这一缺失的知识。这种方法的表面敏感性意味着它非常适合研究分子在表面上的吸附,使其在有机自旋电子学中的应用既新颖又及时。除了C60和金属酞菁等常见OSC之外,还将研究具有两层结构的更奇特的“双层”分子。理论预测这些分子可以充当非常有效的自旋过滤器,但这需要通过实验来证实。氦技术还将使自旋界面能够设计出有利于器件性能的特性。例如,正如我们之前所展示的,H 和 B 等简单原子的吸附可以钝化 Fe3O4 等铁磁材料表面的电子态,并恢复所需的整体特性,如半金属性。基于这些优化的自旋界面,将制造有机自旋阀和磁性隧道结等原型器件,以展示增强的器件性能。还将开发一种新颖的真空键合工艺,以允许在两个器件电极处结合高质量的界面。这开辟了制备有机器件的可能性,其中顶部和底部电极均由铁磁氧化物组成,这一概念迄今为止尚未得到令人满意的证明。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spinterface Formation of Sexithiophene (6T) on Ferromagnetic Surfaces
铁磁表面上六噻吩 (6T) 的旋转界面形成
- DOI:10.1109/tmag.2023.3283093
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Alotaibi M
- 通讯作者:Alotaibi M
Formation of quasi-free-standing graphene on SiC(0001) through intercalation of erbium
- DOI:10.1063/9.0000154
- 发表时间:2021-02
- 期刊:
- 影响因子:1.6
- 作者:P. Bentley;T. Bird;A. Graham;O. Fossberg;S. Tear;A. Pratt
- 通讯作者:P. Bentley;T. Bird;A. Graham;O. Fossberg;S. Tear;A. Pratt
In-Operando Lithium-Ion Transport Tracking in an All-Solid-State Battery.
- DOI:10.1002/smll.202204455
- 发表时间:2022-09
- 期刊:
- 影响因子:13.3
- 作者:Takane Kobayashi;T. Ohnishi;Takahiro Osawa;A. Pratt;S. Tear;Susumu Shimoda;Hidetada Baba;M. Laitinen;T. Sajavaara
- 通讯作者:Takane Kobayashi;T. Ohnishi;Takahiro Osawa;A. Pratt;S. Tear;Susumu Shimoda;Hidetada Baba;M. Laitinen;T. Sajavaara
Aldehyde-Mediated Protein-to-Surface Tethering via Controlled Diazonium Electrode Functionalization Using Protected Hydroxylamines.
使用受保护的羟胺通过受控重氮电极功能化实现醛介导的蛋白质与表面束缚。
- DOI:10.1021/acs.langmuir.9b01254
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yates ND
- 通讯作者:Yates ND
Enhancing the repeatability and sensitivity of low-cost PCB, pH-sensitive field-effect transistors.
增强低成本 PCB、pH 敏感场效应晶体管的可重复性和灵敏度。
- DOI:10.1016/j.bios.2023.115150
- 发表时间:2023
- 期刊:
- 影响因子:12.6
- 作者:Ashton R
- 通讯作者:Ashton R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Pratt其他文献
Public Procurement and Corporate Social Responsibility: A Comparison of Private Firms and U.S. Defense Contractors
公共采购和企业社会责任:私营企业和美国国防承包商的比较
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Andrew Pratt;Keith F. Snider;Rene G. Rendon - 通讯作者:
Rene G. Rendon
Surface spin-polarization of organic semiconductor/half-metallic ferromagnet heterojunctions
有机半导体/半金属铁磁体异质结的表面自旋极化
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Andrew Pratt;et al - 通讯作者:
et al
Intrinsic spin polarity at the surface of ferrite thin films
铁氧体薄膜表面的本征自旋极性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
X. Sun;S Entani;Y. Yamauchi;P. Andrew;M. Kurahashi;Andrew Pratt;Andrew Pratt - 通讯作者:
Andrew Pratt
Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam.
使用低浓度臭氧束对氧化物表面进行超高真空和低温清洁。
- DOI:
10.1063/1.4890208 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Andrew Pratt;P. Graziosi;I. Bergenti;M. Prezioso;A. Dediu;Yasushi Yamauchi - 通讯作者:
Yasushi Yamauchi
Temperature dependence of molecular alignment at organic semiconductor/oxide interfaces
有机半导体/氧化物界面分子排列的温度依赖性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
X. Sun;S Entani;Y. Yamauchi;P. Andrew;M. Kurahashi;Andrew Pratt;Andrew Pratt;Andrew Pratt - 通讯作者:
Andrew Pratt
Andrew Pratt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Pratt', 18)}}的其他基金
SEE MORE MAKE MORE: Secondary Electron Energy Measurement Optimised for Reliable Manufacture of Key Materials: Opportunity, Realisation, Exploitation
查看更多 创造更多:二次电子能量测量优化以实现关键材料的可靠制造:机遇、实现、开发
- 批准号:
EP/V012762/1 - 财政年份:2021
- 资助金额:
$ 12.58万 - 项目类别:
Research Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233592 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Standard Grant
Investigating the Assembly of Bacterial Encapsulins for the Efficient Engineering of Nanoscale Bioreactors
研究细菌封装蛋白的组装以实现纳米级生物反应器的高效工程
- 批准号:
2875161 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Studentship
SEALPTSC Strain and Photonic Engineering Toward Stable, Efficient, and Large-scale All-perovskite Triple-junction Solar Cells
SEALPTSC 应变和光子工程实现稳定、高效和大规模全钙钛矿三结太阳能电池
- 批准号:
EP/Y029216/1 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Fellowship
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233375 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Standard Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
- 批准号:
2305106 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Standard Grant
An Efficient Computational Solver for Complex Engineering Problems
复杂工程问题的高效计算求解器
- 批准号:
DE230101281 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Discovery Early Career Researcher Award
eStructMR - Engineering Electrochemical Structured Membrane Reactor for Efficient Co-valorisation of Methane and Carbon Dioxide
eStructMR - 用于甲烷和二氧化碳高效共价的工程电化学结构膜反应器
- 批准号:
EP/Y028228/1 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Fellowship
Engineering Fuel Cell Electrodes to Overcome Ion Transport Limitations using Low-cost, Efficient Lignin-based Ionomers
使用低成本、高效的木质素离聚物设计燃料电池电极以克服离子传输限制
- 批准号:
2310185 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Standard Grant
Quantum engineering of energy-efficient molecular materials (QMol)
节能分子材料的量子工程(QMol)
- 批准号:
EP/X026876/1 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Research Grant
CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
- 批准号:
2145340 - 财政年份:2022
- 资助金额:
$ 12.58万 - 项目类别:
Continuing Grant














{{item.name}}会员




