Realising a solid state photomultiplier and infrared detectors through bismide containing semiconductors
通过含双酰胺的半导体实现固态光电倍增管和红外探测器
基本信息
- 批准号:EP/N020715/1
- 负责人:
- 金额:$ 65.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Semiconductors are commonly used in imaging sensors and solar cells, as they can directly convert light into an electrical current. The highest band of electron energies that are fully occupied is known as the valence band while the lowest unfilled energy band is the conduction band. The energy difference between the conduction and valence bands is known as the bandgap. When electrons from the valence band are excited into the conduction band by absorbing light with energy equals to or greater than the bandgap, the change of charges induces an electrical current. Consequently the bandgap is the most important parameter in the design of semiconductor photodetectors. While visible wavelength photodetectors are widely available, detectors for infrared wavelengths are significantly less mature and more costly. Progress in infrared detectors has been hindered by the limited choice of bandgaps currently available. In this work we will introduce a novel approach, by incorporating Bismuth (Bi) atoms into existing semiconductors such as InAs and InGaAs, to achieve a wide range of bandgap energies to detect infrared signals across a correspondingly wide wavelength range. Achieving this will lead to a new range of infrared detectors that can have transformative impact on applications including night vision imaging, medical diagnostic sensors, environmental monitors and for accurate temperature measurements in manufacturing processes. We will also exploit Bi-alloys to engineer a noiseless charge amplification process in photodiodes known as avalanche photodiodes (APDs). When an electron leaves the valence band a vacant state (a hole) is created. Therefore an electron and a hole are created as a pair of charges in semiconductors. Properties of the conduction and valence bands will determine how electrons and holes gain energy from an applied electric field. In materials such as InAs, electrons gain energy at a much faster rate and travel at higher velocity too, when a voltage is applied. Therefore InAs is an excellent material for high speed electronic devices and also for providing internal signal amplification in APDs. When designed appropriately, the energetic electrons in InAs APD ensure that the amplification process, known as impact ionisation, is coherent so that negligible amplification noise is generated. In this work we will incorporate Bi into InAs to alter the valence band such that only electrons will gain significant energy from the electric field. This ability to suppress energetic holes will allow us to design very high gain APD across a wide range of electric field while concomitantly suppressing the noise associated with impact ionisation. By carefully controlling the fraction of Ga and Bi atoms, we will also develop a range of InGaAsBi APDs suitable for detecting a wide range of infrared wavelengths. The proposed research to introduce a new class of Bi-containing infrared detectors and APDs, will be carried out by a carefully assembled team of world leading researchers from Universities of Sheffield and Surrey, in collaboration with the Tyndall National Institute, as well as partners from LAND Instruments, Laser Components and the UK Quantum Technology Hubs in Enhanced Quantum Imaging. Our work will start with a focus on formulating growth conditions (such as temperature and atomic fluxes) to obtain high quality InGaAsBi crystals. Following an intensive crystal growth programme, we will develop procedures to fabricate the grown InGaAsBi semiconductors into devices for a wide range of measurements to extract key material parameters. A model that accurately describes the bandstructure of InGaAsBi will be developed so that we can use them to design high performance infrared detectors and APDs. These newly engineered devices will be evaluated with our industrial partners for applications ranging from temperature measurements in manufacturing to novel imaging techniques using quantum properties of light.
半导体通常用于成像传感器和太阳能电池,因为它们可以直接将光转换为电流。被完全占据的电子能量的最高带被称为价带,而最低的未填充能带是导带。导带和价带之间的能量差称为带隙。当来自价带的电子通过吸收能量等于或大于带隙的光而被激发到导带中时,电荷的变化引起电流。因此,带隙是半导体光电探测器设计中最重要的参数。虽然可见光波长光电探测器是广泛可用的,但红外波长的探测器明显不太成熟且更昂贵。红外探测器的发展一直受到当前有限的带隙选择的阻碍。在这项工作中,我们将介绍一种新的方法,通过将铋(Bi)原子到现有的半导体,如InAs和InGaAs,以实现宽范围的带隙能量,以检测在相应的宽波长范围内的红外信号。实现这一目标将产生一系列新的红外探测器,这些探测器可以对夜视成像、医疗诊断传感器、环境监测器等应用产生变革性影响,并用于制造过程中的精确温度测量。 我们还将利用Bi合金在称为雪崩光电二极管(APD)的光电二极管中设计无噪声电荷放大过程。当一个电子离开价带时,就会产生一个空态(空穴)。因此,在半导体中,电子和空穴作为一对电荷产生。导带和价带的性质将决定电子和空穴如何从外加电场中获得能量。在InAs等材料中,当施加电压时,电子以更快的速率获得能量,并且也以更高的速度行进。因此,InAs是用于高速电子器件以及用于在APD中提供内部信号放大的优良材料。当设计适当时,InAs APD中的高能电子确保放大过程(称为碰撞电离)是相干的,从而产生可忽略的放大噪声。在这项工作中,我们将把铋到砷化铟改变价带,使只有电子将获得显着的能量从电场。这种抑制高能空穴的能力将使我们能够在宽范围的电场中设计非常高增益的APD,同时抑制与碰撞电离相关的噪声。通过仔细控制Ga和Bi原子的分数,我们还将开发一系列适用于检测宽范围红外波长的InGaAsBi APD。 拟议的研究将引入一类新的含Bi红外探测器和APD,将由来自谢菲尔德大学和萨里大学的世界领先研究人员组成的精心组建的团队与廷德尔国家研究所以及来自LAND Instruments,Laser Components和英国量子技术中心的合作伙伴合作进行增强量子成像。我们的工作将从制定生长条件(如温度和原子通量)开始,以获得高质量的InGaAsBi晶体。在密集的晶体生长计划之后,我们将开发将生长的InGaAsBi半导体制造成器件的程序,用于广泛的测量以提取关键材料参数。一个准确描述InGaAsBi能带结构的模型将被开发,以便我们可以使用它们来设计高性能的红外探测器和APD。这些新设计的器件将与我们的工业合作伙伴一起进行评估,从制造中的温度测量到使用光的量子特性的新型成像技术。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A comparative study of epitaxial InGaAsBi/InP structures using Rutherford backscattering spectrometry, X-ray diffraction and photoluminescence techniques
- DOI:10.1063/1.5109653
- 发表时间:2019-09
- 期刊:
- 影响因子:3.2
- 作者:M. Sharpe;I. Marko;D. A. Duffy;J. England;E. Schneider;M. Kesaria;V. Fedorov;E. Clarke;C. Tan;S. Sweeney
- 通讯作者:M. Sharpe;I. Marko;D. A. Duffy;J. England;E. Schneider;M. Kesaria;V. Fedorov;E. Clarke;C. Tan;S. Sweeney
Electrical and optical characterisation of low temperature grown InGaAs for photodiode applications
- DOI:10.1088/1361-6641/aba167
- 发表时间:2020-09-01
- 期刊:
- 影响因子:1.9
- 作者:Lim, Leh Woon;Patil, Pallavi;Tan, Chee Hing
- 通讯作者:Tan, Chee Hing
Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region
具有 GaAsSb 吸收区和 AlGaAsSb 雪崩区的极低过量噪声雪崩光电二极管
- DOI:10.1063/5.0139495
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Cao Y
- 通讯作者:Cao Y
Valence band engineering of GaAsBi for low noise avalanche photodiodes.
- DOI:10.1038/s41467-021-24966-0
- 发表时间:2021-08-06
- 期刊:
- 影响因子:16.6
- 作者:Liu Y;Yi X;Bailey NJ;Zhou Z;Rockett TBO;Lim LW;Tan CH;Richards RD;David JPR
- 通讯作者:David JPR
Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM.
- DOI:10.1186/s11671-018-2530-5
- 发表时间:2018-04-25
- 期刊:
- 影响因子:0
- 作者:Baladés N;Sales DL;Herrera M;Tan CH;Liu Y;Richards RD;Molina SI
- 通讯作者:Molina SI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chee Hing Tan其他文献
Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors
半导体 X 射线探测器的雪崩增益和能量分辨率
- DOI:
10.1109/ted.2011.2121915 - 发表时间:
2011 - 期刊:
- 影响因子:3.1
- 作者:
Chee Hing Tan - 通讯作者:
Chee Hing Tan
Chee Hing Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chee Hing Tan', 18)}}的其他基金
Next generation avalanche photodiodes: realising new potentials using nm wide avalanche regions
下一代雪崩光电二极管:利用纳米宽雪崩区域实现新潜力
- 批准号:
EP/K001469/1 - 财政年份:2013
- 资助金额:
$ 65.41万 - 项目类别:
Research Grant
InAsNSb Dilute Nitride Materials for Mid-infrared Devices & Applications
用于中红外器件的 InAsNSb 稀氮化物材料
- 批准号:
EP/J015814/1 - 财政年份:2012
- 资助金额:
$ 65.41万 - 项目类别:
Research Grant
Ultra high detectivity single carrier multiplication InAs avalanche photodiodes for IR optical detection
用于红外光学检测的超高检测率单载流子倍增 InAs 雪崩光电二极管
- 批准号:
EP/H031464/1 - 财政年份:2010
- 资助金额:
$ 65.41万 - 项目类别:
Research Grant
Novel InGaAs/InAlAs travelling wave avalanche photodiode for ultra high speed photonic applications
适用于超高速光子应用的新型 InGaAs/InAlAs 行波雪崩光电二极管
- 批准号:
EP/D064759/1 - 财政年份:2006
- 资助金额:
$ 65.41万 - 项目类别:
Research Grant
相似国自然基金
拟双曲几何及相关研究
- 批准号:11071063
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:面上项目
应用改良染色体构象捕获策略确定HBV增强子在肝癌细胞对宿主基因的调节
- 批准号:81071649
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
基于SSD的大规模元数据处理技术研究
- 批准号:60970025
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
全固态钠黄光激光器波长调控与锁定技术研究
- 批准号:60508013
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
- 批准号:
2335454 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Standard Grant
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
- 批准号:
2331724 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Cooperative Agreement
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
- 批准号:
2339634 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Continuing Grant
Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
- 批准号:
DP240102728 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Discovery Projects
Understanding the mechanosynthesis mechanism of solid-state electrolytes via in-situ synchrotron XRD
通过原位同步加速器 XRD 了解固态电解质的机械合成机制
- 批准号:
24K17553 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
- 批准号:
EP/Y007778/1 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Research Grant
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
- 批准号:
EP/Z000254/1 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Research Grant
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
- 批准号:
2327327 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Standard Grant
"In-Crystallo" Solid-State Molecular Organometallic Chemistry of Methane, Ethane and Propane. Synthesis, Structures and Catalysis in Single-Crystals
甲烷、乙烷和丙烷的“晶体内”固态分子有机金属化学。
- 批准号:
EP/W015498/2 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Research Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 65.41万 - 项目类别:
Continuing Grant