Novel InGaAs/InAlAs travelling wave avalanche photodiode for ultra high speed photonic applications

适用于超高速光子应用的新型 InGaAs/InAlAs 行波雪崩光电二极管

基本信息

  • 批准号:
    EP/D064759/1
  • 负责人:
  • 金额:
    $ 21.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The explosive use of internet has increased the demand for high speed photodetectors to convert optical signal to electrical signal at 2.5Gb/s, 10Gb/s or 40Gb/s optical communication systems. High sensitivity photodetectors that can detect very low light level are important to improve the signal quality and increase the transmission distance and hence lower the cost of these systems. They are also required in sequencing of the human genome, in medical imaging and in future quantum computing. Semiconductor avalanche photodiodes (APDs) can offer the high sensitivity required for these applications and are robust, cheap, compact and efficient. In APDs an electron-hole pair can trigger an avalanche of electrons and holes (like the snow avalanche effect). This multiplication process provides an internal gain which improves the sensitivity of APDs. In most semiconductors, there is significant statistical fluctuation in the multiplication process giving rise to unwanted excess noise. Low excess noise is important and this can be achieved by using a material in which electrons can multiply much easier than holes (or vice versa).In optical communication systems infrared light with a wavelength of 1550nm is used to transmit information to minimise loss in the optical fiber. Because of this we will have to use APDs fabricated using a semiconductor called InGaAs as an absorption layer to detect infrared light of 1550nm and another semiconductor, InAlAs, as the multiplication layer to produce the avalanche effect. InAlAs produces less excess noise compared to currently available commercial APDs at 1550nm because electrons can multiply much easier than holes in this material. From our research we know that we can further reduce the excess noise by using very thin sub-micron multiplication layer (< 1/50 of the diameter of our hair) and carefully engineer the electric field profile in the InAlAs multiplication layer. We have shown that these techniques can reduce the excess noise leading to higher sensitivity APD. In this project we will grow, fabricate and characterise a number of different designs to minimise the excess noise in our APDs. Another important parameter of APDs is the bandwidth since they operate at very high data rate up to 40Gb/s. To achieve high bandwidth we will incorporate the following innovations; Firstly, we will use very thin sub-micron absorption and multiplication layers to reduce the electron and hole transit times. To ensure that the infrared light is absorbed efficiently we will confine the light in a special structure called optical waveguide. By integrating the APD with a waveguide the infrared light will be efficiently absorbed to yield high speed high sensitivity waveguide-APD. Secondly, we are going to design the waveguide-APD into a structure called travelling wave-APD which has characteristics of an electrical transmission line. This structure will ensure that high speed signals are transmitted efficiently from our APD to the external circuit. We will use a theoretical model to predict the characteristics of the travelling-wave to make sure that they can produce high sensitivity at frequency up to 40GHz.There are several experiments that we will perform to give us the understanding we need to produce a high speed high sensitivity photodetector. Measurements on the APDs to monitor how the multiplication changes with temperature ranging from room temperature down to -250 degree Celcius as well as how the multiplication changes when the signal frequency is increased up to 40GHz will be carried out. This will provide us the data and understanding required to produce very high sensitivity photodetectors for optical communication systems as well as many other applications such as for medical imaging, environmental pollutant monitoring, defects monitoring in manufacturing and many other areas that affect our daily lives.
互联网的爆炸性使用增加了对高速光电探测器的需求,以在2.5Gb/s、10 Gb/s或40 Gb/s光通信系统中将光信号转换为电信号。高灵敏度的光电探测器,可以检测非常低的光级是重要的,以提高信号质量和增加传输距离,从而降低这些系统的成本。人类基因组测序、医学成像和未来的量子计算也需要它们。半导体雪崩光电二极管(APD)可以提供这些应用所需的高灵敏度,并且坚固、廉价、紧凑和高效。在APD中,电子-空穴对可以触发电子和空穴的雪崩(如雪崩效应)。该乘法过程提供了提高APD灵敏度的内部增益。在大多数半导体中,在倍增过程中存在显著的统计波动,从而引起不需要的过量噪声。低的多余噪声是很重要的,这可以通过使用电子比空穴更容易繁殖的材料来实现(反之亦然)。在光通信系统中,波长为1550 nm的红外光用于传输信息,以最大限度地减少光纤中的损耗。正因为如此,我们将不得不使用APD,该APD使用称为InGaAs的半导体作为吸收层来检测1550 nm的红外光,并使用另一种半导体InAlAs作为倍增层来产生雪崩效应。InAlAs在1550 nm处产生的过量噪声比目前可用的商业APD少,因为在这种材料中电子比空穴更容易繁殖。从我们的研究中我们知道,我们可以通过使用非常薄的亚微米倍增层(<头发直径的1/50)并仔细设计InAlAs倍增层中的电场分布来进一步降低过量噪声。我们已经表明,这些技术可以减少多余的噪声,从而提高灵敏度APD。在这个项目中,我们将增长,制造和测试一些不同的设计,以尽量减少我们的APD中的多余噪音。APD的另一个重要参数是带宽,因为它们以高达40 Gb/s的非常高的数据速率工作。为了实现高带宽,我们将结合以下创新:首先,我们将使用非常薄的亚微米吸收和倍增层,以减少电子和空穴的渡越时间。为了确保红外光被有效地吸收,我们将把光限制在一种称为光波导的特殊结构中。通过将APD与波导集成,红外光将被有效地吸收以产生高速高灵敏度波导APD。其次,我们将设计的波导APD的结构称为行波APD,它具有电力传输线的特性。这种结构将确保高速信号从我们的APD有效地传输到外部电路。我们将使用一个理论模型来预测行波的特性,以确保它们可以在高达40 GHz的频率下产生高灵敏度。我们将进行几个实验来了解我们需要生产高速高灵敏度光电探测器。将对APD进行测量,以监测倍增如何随温度变化(从室温到-250摄氏度),以及当信号频率增加到40 GHz时倍增如何变化。这将为我们提供生产用于光通信系统的非常高灵敏度的光电探测器所需的数据和理解,以及许多其他应用,如医疗成像,环境污染物监测,制造业缺陷监测和影响我们日常生活的许多其他领域。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature Dependence of Avalanche Breakdown in InP and InAlAs
  • DOI:
    10.1109/jqe.2010.2044370
  • 发表时间:
    2010-08-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Tan, Lionel Juen Jin;Ong, Daniel Swee Guan;David, John Paul Raj
  • 通讯作者:
    David, John Paul Raj
Extremely low excess noise InAlAs avalanche photodiodes
极低的过量噪声 InAlAs 雪崩光电二极管
  • DOI:
    10.1109/iciprm.2007.381127
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tan C
  • 通讯作者:
    Tan C
Low excess noise APD with detection capabilities above 2 microns
低过量噪声 APD,检测能力超过 2 微米
  • DOI:
    10.1109/iciprm.2010.5516200
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goh Y
  • 通讯作者:
    Goh Y
Modeling of avalanche multiplication and excess noise factor in In0.52Al0.48As avalanche photodiodes using a simple Monte Carlo model
使用简单的蒙特卡罗模型对 In0.52Al0.48As 雪崩光电二极管中的雪崩倍增和过量噪声系数进行建模
1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature.
  • DOI:
    10.1364/oe.22.022608
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    X. Meng;C. Tan;S. Dimler;J. David;J. Ng
  • 通讯作者:
    X. Meng;C. Tan;S. Dimler;J. David;J. Ng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chee Hing Tan其他文献

Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors
半导体 X 射线探测器的雪崩增益和能量分辨率

Chee Hing Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chee Hing Tan', 18)}}的其他基金

Realising a solid state photomultiplier and infrared detectors through bismide containing semiconductors
通过含双酰胺的半导体实现固态光电倍增管和红外探测器
  • 批准号:
    EP/N020715/1
  • 财政年份:
    2016
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Research Grant
Next generation avalanche photodiodes: realising new potentials using nm wide avalanche regions
下一代雪崩光电二极管:利用纳米宽雪崩区域实现新潜力
  • 批准号:
    EP/K001469/1
  • 财政年份:
    2013
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Research Grant
InAsNSb Dilute Nitride Materials for Mid-infrared Devices & Applications
用于中红外器件的 InAsNSb 稀氮化物材料
  • 批准号:
    EP/J015814/1
  • 财政年份:
    2012
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Research Grant
Ultra high detectivity single carrier multiplication InAs avalanche photodiodes for IR optical detection
用于红外光学检测的超高检测率单载流子倍增 InAs 雪崩光电二极管
  • 批准号:
    EP/H031464/1
  • 财政年份:
    2010
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Research Grant

相似国自然基金

基于应力平衡量子阱结构的超高效GaInP/GaAs(QWs)/InGaAs太阳电池研究
  • 批准号:
    62304243
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
InGaAs/Si大失配异质界面稳定性及高增益带宽积APD研究
  • 批准号:
    62375229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
InGaAs/InP雪崩光电二极管的缺陷形成机理和性能退化机制研究
  • 批准号:
    U2241219
  • 批准年份:
    2022
  • 资助金额:
    255.00 万元
  • 项目类别:
    联合基金项目
InGaAs/InAlAs异质结双鳍电子空穴双层隧穿场效应晶体管研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
趋于单光子探测的高增益、低功耗InGaAs异质结光电晶体管基础研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于P-B-I-N势垒结构InGaAs焦平面探测器噪声调控机理研究
  • 批准号:
    22ZR1472600
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Si(111)图形衬底选区外延生长的GaAs/InGaAs核壳结构纳米线激光器研究
  • 批准号:
    62174046
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
表面集成人工微纳结构的宽谱段InGaAs焦平面探测器研究
  • 批准号:
    62175250
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
硅基高迁移率InGaAs沟道叠层栅mosfet器件及可靠性研究
  • 批准号:
    62174041
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
基于高迁移率材料InGaAs与Ge的MOSFET器件设计与电学特性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Effects of proton radiation on InGaAs single-photon avalanche detectors used in quantum communication
质子辐射对量子通信中使用的 InGaAs 单光子雪崩探测器的影响
  • 批准号:
    552934-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Study of multi-value spin-logic device development using InGaAs quantum well bilayer electron systems
利用InGaAs量子阱双层电子系统开发多值自旋逻辑器件的研究
  • 批准号:
    20K04631
  • 财政年份:
    2020
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel AlAs-InGaAs-AlAs Resonant Tunnelling Diodes for THz
太赫兹新型 AlAs-InGaAs-AlAs 谐振隧道二极管
  • 批准号:
    1917913
  • 财政年份:
    2017
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Studentship
Study on nitrogen-polar InGaAs-channel high electron mobility transistors
氮极性InGaAs沟道高电子迁移率晶体管的研究
  • 批准号:
    16H04341
  • 财政年份:
    2016
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
In-situ Transmission Electron Microscopy Studies of Metal Contact with InGaAs Nanochannels: Correlating Interface Reactions with Properties
金属与 InGaAs 纳米通道接触的原位透射电子显微镜研究:将界面反应与性能相关联
  • 批准号:
    1503595
  • 财政年份:
    2015
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Continuing Grant
Terahertz quantum cascade lasers based on interface roughness engineering in InGaAs/InAlAs heterostructures on InP
基于 InP 上 InGaAs/InAlAs 异质结构界面粗糙度工程的太赫兹量子级联激光器
  • 批准号:
    248490517
  • 财政年份:
    2014
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Research Grants
3D InGaAs MOSFET with regrown source/drain
具有再生源极/漏极的 3D InGaAs MOSFET
  • 批准号:
    25420322
  • 财政年份:
    2013
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rabi oscillations in InGaAs quantum dots
InGaAs 量子点中的拉比振荡
  • 批准号:
    433672-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 21.74万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of InGaAs/InAs on Silicon light emitting devices for environmental analyses
开发用于环境分析的硅发光器件 InGaAs/InAs
  • 批准号:
    24681026
  • 财政年份:
    2012
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Quantum electronic devices and circuits based on InGaAs/InP ridge structures achieved via CBE nano-template technology
通过CBE纳米模板技术实现基于InGaAs/InP脊结构的量子电子器件和电路
  • 批准号:
    341406-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 21.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了