Non-perturbative and stochastic approaches to many-body localization
多体定位的非扰动随机方法
基本信息
- 批准号:EP/P010180/1
- 负责人:
- 金额:$ 47.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central question in physics concerns the complexity of any given system. What is the nature of quantities characterising the system behaviour, and which characteristics can be safely ignored? How sensitive is the system against external perturbations and how predictable is its dynamics? How many parameters need to be controlled to manipulate the system in a specific way? These questions not only lie at the heart of fundamental fields such as statistical mechanics, but also provide the key to the characterisation of equilibrium phases and nonequilibrium dynamics and pervade practical applications in quantum information, control and sensing.Meeting the urgent need to understand these questions in the quantum setting, the scientific community has recently identified a key paradigm that should hold many of the required answers. This concerns large but finite many-body systems with disorder, low spatial dimensionality and local interactions. These ingredients have been seen to conspire in a persistence of local memory of initial conditions, a fascinating phenomenon known as many-body localisation (MBL). The understanding of this phenomenon is still in its infancy. The theoretical arguments for MBL are thorough, but also in essence qualitative, while quantitative insight to date mainly arrives from numerical investigations of relatively small (in real-world terms) systems. This state of affairs has given rise to a proliferation of characterisations based, among others, on transport, thermalisation, entanglement, dynamics, whose detailed mutual relationships are mostly unclear. These shortcomings become even more pressing as the very first dedicated experiments target yet another set of characteristics, the directly observable consequences in real-world systems.In this project, we take a step back and ask the question: which level of understanding could be accepted to constitute a rather complete description of many-body localisation and delocalisation? Taking a leaf out of the book from non-interacting systems, we argue that this has to involve, as a central piece, a statistical description in quasi-one dimensional settings. We approach this goal from (I.) a rich one-dimensional model system originating from lattice field theory (the Schwinger model, a version of quantum electrodynamics) which is amenable to a detailed treatment and (II.) a stochastic description based on fundamental composition rules of the density matrix (the key object to describe entanglement), allowing comprehensive access to the generic system behaviour. Amongst the observable consequences, we aim to (III.) discriminate between general and system-specific aspects in the MBL phase and of the phase transition, including experimentally testable signatures, and (IV.) extend the considerations to topological phases, where the system displays order due to intricate quantum effects.
物理学中的一个核心问题涉及到任何给定系统的复杂性。表征系统行为的量的性质是什么?哪些特性可以安全地忽略?系统对外部扰动的敏感度有多高,其动态的可预测性有多高?需要控制多少参数才能以特定方式操纵系统?这些问题不仅位于统计力学等基础领域的核心,而且为描述平衡相和非平衡动力学提供了关键,并渗透到量子信息、控制和传感的实际应用中。为了满足在量子环境下理解这些问题的迫切需要,科学界最近确定了一个关键范式,它应该包含许多所需的答案。这涉及到具有无序、低空间维度和局部相互作用的大型但有限的多体系统。这些因素被认为共同作用于对初始条件的局部记忆的持久存在,这是一种被称为多体定位(MBL)的迷人现象。对这一现象的理解还处于初级阶段。关于MBL的理论论证是彻底的,但在本质上也是定性的,而迄今为止的定量见解主要来自对相对较小的(在现实世界中)系统的数字调查。这种情况导致了基于运输、热化、纠缠、动力学等特征的激增,这些特征的详细相互关系大多不清楚。这些缺点变得更加紧迫,因为第一个专门的实验针对的是另一组特征,即真实世界系统中直接可见的后果。在这个项目中,我们退一步问一个问题:什么样的理解水平可以被接受,以构成对多体局部化和非局部化的相当完整的描述?借鉴非相互作用系统的经验,我们认为,作为核心,这必须涉及准一维环境中的统计描述。我们从(I)开始实现这一目标。源于格子场理论的丰富的一维模型系统(Schwinger模型,量子电动力学的一个版本),它可以经过详细的处理和(Ii)。基于密度矩阵(描述纠缠的关键对象)的基本组成规则的随机描述,允许全面访问一般系统行为。在可观察到的后果中,我们的目标是(Iii)区分MBL阶段和相变阶段的一般和系统特定方面,包括可通过实验测试的特征,以及(Iv)。将考虑扩展到拓扑阶段,在拓扑阶段,由于复杂的量子效应,系统显示出秩序。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insights into Low-Dimensional Many-Body Localised Systems
深入了解低维多体局部系统
- DOI:10.17635/lancaster/thesis/1664
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen C
- 通讯作者:Chen C
Universal hypotrochoidic law for random matrices with cyclic correlations
具有循环相关性的随机矩阵的通用次摆轮线定律
- DOI:10.48550/arxiv.1812.07055
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Aceituno P
- 通讯作者:Aceituno P
One-particle density matrix characterization of many-body localization
- DOI:10.1002/andp.201600356
- 发表时间:2017-07-01
- 期刊:
- 影响因子:2.4
- 作者:Bera, Soumya;Martynec, Thomas;Bardarson, Jens H.
- 通讯作者:Bardarson, Jens H.
Supersymmetric Polarization Anomaly in Photonic Discrete-Time Quantum Walks.
- DOI:10.1103/physrevlett.121.260501
- 发表时间:2018-04
- 期刊:
- 影响因子:8.6
- 作者:S. Barkhofen;L. Lorz;Thomas Nitsche;C. Silberhorn;H. Schomerus
- 通讯作者:S. Barkhofen;L. Lorz;Thomas Nitsche;C. Silberhorn;H. Schomerus
Diagnostics of entanglement dynamics in noisy and disordered spin chains via the measurement-induced steady-state entanglement transition
通过测量引起的稳态纠缠跃迁诊断噪声和无序自旋链中的纠缠动力学
- DOI:10.1103/physrevb.105.144202
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Boorman T
- 通讯作者:Boorman T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henning Schomerus其他文献
Nonuniversality of anderson localization in short-range correlated disorder.
短程相关障碍中安德森定位的非普遍性。
- DOI:
10.1103/physrevlett.95.126602 - 发表时间:
2005 - 期刊:
- 影响因子:8.6
- 作者:
Mikhail Titov;Henning Schomerus - 通讯作者:
Henning Schomerus
Short-distance wavefunction statistics in one-dimensional Anderson localization
一维安德森定位中的短距离波函数统计
- DOI:
10.1140/epjb/e2003-00294-0 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Henning Schomerus;Mikhail Titov - 通讯作者:
Mikhail Titov
Transmission delay times of localized waves.
局域波的传输延迟时间。
- DOI:
10.1103/physreve.64.026606 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Henning Schomerus - 通讯作者:
Henning Schomerus
Band-center anomaly of the conductance distribution in one-dimensional Anderson localization
一维安德森定位中电导分布的带中心异常
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Henning Schomerus;Mikhail Titov - 通讯作者:
Mikhail Titov
Roadmap on topological photonics
- DOI:
10.1088/2515-7647/ac4ee4 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Hannah Price;Yidong Chong;Alexander Khanikaev;Henning Schomerus;Lukas J. Maczewsky;Mark Kremer;Matthias Heinrich;Alexander Szameit;Oded Zilberberg;Yihao Yang;Baile Zhang;Andrea Alù;Ronny Thomale;Iacopo Carusotto;Philippe St-Jean;Alberto Amo;Avik Dutt;Luqi - 通讯作者:
Luqi
Henning Schomerus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henning Schomerus', 18)}}的其他基金
Orbit-Based Methods for Multielectron Systems in Strong Fields
强场中多电子系统的基于轨道的方法
- 批准号:
EP/J019585/1 - 财政年份:2013
- 资助金额:
$ 47.72万 - 项目类别:
Research Grant
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 47.72万 - 项目类别:
Research Grant
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
$ 47.72万 - 项目类别:
Continuing Grant
Non-perturbative constraints on strongly interacting systems
强相互作用系统的非微扰约束
- 批准号:
2889469 - 财政年份:2023
- 资助金额:
$ 47.72万 - 项目类别:
Studentship
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 47.72万 - 项目类别:
Studentship
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
- 批准号:
2310243 - 财政年份:2023
- 资助金额:
$ 47.72万 - 项目类别:
Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
$ 47.72万 - 项目类别:
Continuing Grant
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
- 批准号:
23K03382 - 财政年份:2023
- 资助金额:
$ 47.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
$ 47.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Resurgence and non-perturbative phenomena in strongly coupled field theories
强耦合场论中的复兴和非微扰现象
- 批准号:
2890362 - 财政年份:2023
- 资助金额:
$ 47.72万 - 项目类别:
Studentship














{{item.name}}会员




