Analysis of models for large-scale geophysical flows

大规模地球物理流模型分析

基本信息

  • 批准号:
    EP/P011543/1
  • 负责人:
  • 金额:
    $ 37.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The rigorous analysis of the highly nonlinear equations that model atmospheric and oceanic flows is a very difficult task, generally beyond the power of current mathematical tools. This is certainly true of the full governing equations, the famous compressible Navier-Stokes equations (called Euler equations when viscosity is neglected), whose solution is too complicated to compute, even numerically. Indeed, in practice the modelling that informs applications, such as forecasting the weather, is based on averaged versions or simplified reductions of the governing equations. While such equations are used ubiquitously to model complex physical phenomena and to perform numerical approximations, both the solvability of the models and the validity of the approximations computed rests largely on heuristics rather than on rigorous mathematical ground. This proposal concerns a particular system of equations, the semi-geostrophic system, that models the large-scale dynamics of inviscid geophysical flows.The importance of this particular model rests on the fact that, as an asymptotic reduction, the system is expected to be a more accurate approximation to the full model than other reductions used in practice. In addition the validity of this reduction persists also when certain parameters, for example the earth rotation coefficient, are taken to be variable. For this reason, the model can approximate the large-scale dynamics of the flow more accurately than models whose solutions are assumed close to a uniform reference state. Mathematically, the semi-geostrophic system supports singular solutions, thus it can capture rigorously phenomena such as front formation. This is important in view of the fact that the physical derivation of this system was guided precisely by the need to model the formation of atmospheric fronts.The mathematical interest in the semi-geostrophic model has been revived by the discovery that a specific change of variables, well known to practitioners, transforms it into a system that can be analysed rigorously by using modern techniques of variational analysis and optimal transport theory. Activity in these areas in the past twenty years has seen very important results and advances, depending on delicate and sophisticated mathematical tools. The overarching aim of this project is to adapt and translate these techniques and, using new recent insights, to obtain results on the existence and uniqueness of solutions of the semigeostrophic system in increasingly realistic cases. The research proposed also aims at proving the validity and asymptotic order of the system as a reduction of the Euler equations, thus putting on rigorous foundations the numerical and physical modelling based on these equations.
严格分析模拟大气和海洋流动的高度非线性方程是一项非常困难的任务,通常超出了当前数学工具的能力。对于完整的控制方程,即著名的可压缩Navier-Stokes方程(当忽略粘性时称为欧拉方程),这当然是正确的,其解太复杂而无法计算,即使是数值计算。事实上,在实践中,为天气预报等应用提供信息的建模是基于控制方程的平均版本或简化约简。虽然这些方程被广泛用于模拟复杂的物理现象和进行数值近似,但模型的可解性和计算近似的有效性主要取决于数学方法,而不是严格的数学基础。这一建议涉及一个特殊的方程系统,半地转系统,模拟大尺度的无粘地球物理流的动力学,这个特殊的模型的重要性在于,作为一个渐近约化,该系统预计是一个更准确的近似的完整的模型比在实践中使用的其他约化。此外,当某些参数,例如地球自转系数,被认为是可变的,这种减少的有效性也仍然存在。由于这个原因,该模型可以近似的大规模的流动动力学更准确地比模型的解决方案被假定为接近一个统一的参考状态。在数学上,半地转系统支持奇异解,因此它可以精确地捕捉到锋面形成等现象。这一点很重要,因为这个系统的物理推导是由模拟大气锋形成的需要精确地指导的。半地转模式的数学兴趣已经恢复,因为发现了一个特定的变量变化,众所周知的从业者,将其转换为一个系统,可以通过使用变分分析和最优传输理论的现代技术进行严格分析。在过去的二十年里,这些领域的活动取得了非常重要的成果和进展,这取决于精密和复杂的数学工具。这个项目的首要目标是适应和翻译这些技术,并使用最近的新见解,以获得越来越现实的情况下的半地转系统的解决方案的存在性和唯一性的结果。所提出的研究还旨在证明系统作为欧拉方程约化的有效性和渐进阶,从而为基于这些方程的数值和物理建模奠定严格的基础。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new implementation of the geometric method for solving the Eady slice equations
求解Eady切片方程的几何方法的新实现
Linear Dynamics of the Semi-geostrophic Equations in Eulerian Coordinates on $${\mathbb {R}}^{3}$$
$${mathbb {R}}^{3}$$ 上欧拉坐标中的半地转方程的线性动力学
The Stability Principle and global weak solutions of the free surface semi-geostrophic equations in geostrophic coordinates.
地转坐标下自由表面半地转方程的稳定性原理和全局弱解。
A derivation of the Liouville equation for hard particle dynamics with non-conservative interactions
非保守相互作用硬粒子动力学刘维尔方程的推导
  • DOI:
    10.1017/prm.2020.49
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goddard B
  • 通讯作者:
    Goddard B
Smooth solutions of the surface semi-geostrophic equations
地表半地转方程的光滑解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beatrice Pelloni其他文献

Preface: Integrable systems and their applications, celebrating the 70th birthday of Athanassios S. Fokas
前言:可积系统及其应用,庆祝 Athanassios S. Fokas 70 岁生日
  • DOI:
    10.1111/sapm.12707
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    M. Ablowitz;Jingsong He;Beatrice Pelloni
  • 通讯作者:
    Beatrice Pelloni
Evolution equations on time-dependent intervals
时间相关区间的演化方程
  • DOI:
    10.1093/imamat/hxz025
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Athanasios S Fokas;Beatrice Pelloni;Baoqiang Xia
  • 通讯作者:
    Baoqiang Xia
Solutions of the Fully Compressible Semi-Geostrophic System
全可压缩半地转系统的解

Beatrice Pelloni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beatrice Pelloni', 18)}}的其他基金

Maths Research Associates 2021 Heriot Watt
数学研究助理 2021 赫瑞瓦特
  • 批准号:
    EP/W522570/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
Generalised Fourier transforms and moving boundary value problems
广义傅里叶变换和移动边值问题
  • 批准号:
    EP/E022960/1
  • 财政年份:
    2007
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
  • 批准号:
    10643212
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
Viral vector-mediated gene activation to facilitate large-scale genetic analysis in Caenorhabditis elegans.
病毒载体介导的基因激活,以促进秀丽隐杆线虫的大规模遗传分析。
  • 批准号:
    10818806
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
Viral vector-mediated gene activation to facilitate large-scale genetic analysis in Caenorhabditis elegans.
病毒载体介导的基因激活,以促进秀丽隐杆线虫的大规模遗传分析。
  • 批准号:
    10572507
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
  • 批准号:
    10740597
  • 财政年份:
    2023
  • 资助金额:
    $ 37.35万
  • 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
  • 批准号:
    10373650
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
Understanding the genomic basis of problematic alcohol use through integrative analysis of multi-omics data
通过多组学数据的综合分析了解有问题的饮酒的基因组基础
  • 批准号:
    10429414
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
  • 批准号:
    10551850
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
Improving functional MRI Analysis via Integrated One-Step Tensor-variate Methodology
通过集成一步张量变量方法改进功能 MRI 分析
  • 批准号:
    10708147
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
  • 批准号:
    RGPIN-2020-04075
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Discovery Grants Program - Individual
CORE 1/2: INIA Stress and Chronic Alcohol Interactions: Computational and Statistical Analysis Core (CSAC)
CORE 1/2:INIA 压力和慢性酒精相互作用:计算和统计分析核心 (CSAC)
  • 批准号:
    10411629
  • 财政年份:
    2022
  • 资助金额:
    $ 37.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了