Hydrophosphination Catalysis Using Low-Coordinate Iron Complexes

使用低配位铁配合物的氢膦化催化

基本信息

  • 批准号:
    EP/R004064/1
  • 负责人:
  • 金额:
    $ 49.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Organophosphorus compounds are one of the most important species in chemistry, driving critical advances in areas such as medicine, metal extraction, nuclear fuel processing, lubricants, agrochemicals, materials and supramolecular chemistry. Their wide use as ligands to transition metals underpins many modern homogeneous catalytic processes, for example in metal-catalysed cross-coupling, alkene metathesis and C-H activation reactions. Classic synthetic routes to phosphines often display poor functional group tolerance, side product formation, and use a significant number of steps including stoichiometric amounts of additives, toxic metal reagents and protecting groups. These limitations lead to copious waste, representing a problem for atom economy. Hydrophosphination reactions involve the addition of a P-H moiety across an unsaturated bond, and offer the potential for 100% atom efficiency with the opportunity to generate significant complexity in the organophosphorus products using relatively simple starting materials. In particular, the hydrophosphination of C=X (X = O, N, S) bonds is a powerful way to introduce heteroatom functionality into products, but remains poorly explored due to the paucity of suitable catalytic complexes, competing side reactions and catalyst poisoning. Thus, the use of this reaction as a convenient strategy to heterofunctionalised phosphorus compounds has not been exploited. Driven by major global efforts towards chemical synthesis using earth-abundant and non-toxic metals, we propose to deliver a new approach for the syntheses of organophosphorus compounds using iron complexes as pre-catalysts for the hydrophosphination of heterocumulene compounds. Significantly, our complexes can catalyse novel diinsertion pathways for this reaction, which are very rare and usually difficult to control. These new reaction pathways have the power to unlock new reactions and synthetic methodologies. We will explore this hydrophosphination chemistry and use unexplored substrates to deliver new families of organophosphorus compounds and develop a rational approach to control reactivity and regioselectivity through the manipulation of the structure of the catalyst and the reaction conditions. This chemistry will be used to synthesise specific organophosphorus targets and the elucidation of the mechanisms for this catalysis will provide experimental and theoretical data to inform new reaction strategies that may be developed in new catalytic reactions. This research programme will thus deliver a wealth of fundamental knowledge in addition to a bank of new organophosphorus compounds, which will be made available to researchers in academia and industry.This research programme has the potential to have significant impact for a broad range of academic and industrial applications due to the extensive properties and potential uses of a range of very different organophosphorus species. We envisage that our approach to the catalysis of hydrophosphination will impact a range of hydroelementation reactions and may impact other methodologies such as homologation, polymerisation and selective oligomerisation reactions.
有机磷化合物是化学中最重要的物种之一,推动了医学,金属提取,核燃料加工,润滑剂,农用化学品,材料和超分子化学等领域的关键进展。它们作为过渡金属的配体的广泛使用支撑了许多现代均相催化过程,例如在金属催化的交叉偶联、烯烃复分解和C-H活化反应中。膦的经典合成路线通常表现出差的官能团耐受性、副产物形成,并且使用大量步骤,包括化学计量量的添加剂、有毒金属试剂和保护基团。这些限制导致大量的废物,代表原子经济的问题。氢化膦化反应涉及在不饱和键上添加P-H部分,并且提供了100%原子效率的潜力,并且有机会使用相对简单的起始材料在有机磷产物中产生显著的复杂性。特别地,C=X(X = 0、N、S)键的氢化膦化是将杂原子官能团引入产物中的有力方式,但由于缺乏合适的催化络合物、竞争性副反应和催化剂中毒而仍然探索不足。因此,使用该反应作为杂官能化磷化合物的方便策略尚未被开发。在全球利用地球上丰富且无毒的金属进行化学合成的重大努力的推动下,我们提议提供一种使用铁配合物作为杂累积苯化合物氢磷化预催化剂合成有机磷化合物的新方法。值得注意的是,我们的复合物可以催化这种反应的新的二插入途径,这是非常罕见的,通常难以控制。这些新的反应途径有能力解锁新的反应和合成方法。我们将探索这种氢化膦化化学,并使用未探索的底物来提供新的有机磷化合物家族,并开发一种合理的方法来控制反应性和区域选择性,通过操纵催化剂的结构和反应条件。这种化学将用于合成特定的有机磷目标,这种催化机制的阐明将提供实验和理论数据,以告知可能在新的催化反应中开发的新的反应策略。因此,该研究计划将提供丰富的基础知识,以及一个新的有机磷化合物库,供学术界和工业界的研究人员使用。由于一系列非常不同的有机磷物种的广泛性质和潜在用途,该研究计划有可能对广泛的学术和工业应用产生重大影响。我们设想,我们的方法催化氢化膦化将影响一系列的加氢反应,并可能影响其他方法,如同系化,聚合和选择性低聚反应。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective reduction and homologation of carbon monoxide by organometallic iron complexes.
  • DOI:
    10.1038/s41467-018-06242-w
  • 发表时间:
    2018-09-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Sharpe HR;Geer AM;Taylor LJ;Gridley BM;Blundell TJ;Blake AJ;Davies ES;Lewis W;McMaster J;Robinson D;Kays DL
  • 通讯作者:
    Kays DL
Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions.
  • DOI:
    10.1021/acs.inorgchem.0c03623
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yu Liu;Laurence J. Taylor;S. Argent;J. McMaster;D. Kays
  • 通讯作者:
    Yu Liu;Laurence J. Taylor;S. Argent;J. McMaster;D. Kays
A transition metal-gallium cluster formed via insertion of "GaI".
通过插入“GaI”形成的过渡金属-镓簇。
Organoruthenium Complexes Containing Phosphinodicarboxamide Ligands
含有膦二甲酰胺配体的有机钌配合物
  • DOI:
    10.3390/inorganics11090372
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Nolla-Saltiel R
  • 通讯作者:
    Nolla-Saltiel R
Corrigendum: A Highly Active Bidentate Magnesium Catalyst for Amine-Borane Dehydrocoupling: Kinetic and Mechanistic Studies.
勘误表:用于胺-硼烷脱氢偶联的高活性双齿镁催化剂:动力学和机理研究。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deborah Kays其他文献

Deborah Kays的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deborah Kays', 18)}}的其他基金

The stabilisation of novel bonding modes in group 2 complexes
第 2 族配合物中新型键合模式的稳定性
  • 批准号:
    EP/G011850/1
  • 财政年份:
    2009
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Research Grant

相似国自然基金

不对称Tandem catalysis 合成手性仲醇
  • 批准号:
    20643008
  • 批准年份:
    2006
  • 资助金额:
    8.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Unlocking Photoswitchable Main-group Catalysis Using Azophosphines
使用偶氮膦解锁光切换主族催化
  • 批准号:
    EP/W036908/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Research Grant
Photothermal Catalysis: Using light to thermally generate reactive intermediates with temporal and spatial control
光热催化:利用光热生成具有时间和空间控制的反应中间体
  • 批准号:
    10713733
  • 财政年份:
    2023
  • 资助金额:
    $ 49.36万
  • 项目类别:
Taming the Complexity of High Entropy Alloy for Catalysis using Multinary Intermetallics
利用多元金属间化合物降低高熵合金催化的复杂性
  • 批准号:
    2247797
  • 财政年份:
    2023
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Standard Grant
New Opportunities in Enantioselective Catalysis Using Lewis Acidic Boranes
使用路易斯酸性硼烷进行对映选择性催化的新机遇
  • 批准号:
    2882637
  • 财政年份:
    2023
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Studentship
IonPairEnantRadical : Transforming Enantioselective Radical Chemistry using Ion Pairing Catalysis
IonPairEnantRadical:利用离子对催化转变对映选择性自由基化学
  • 批准号:
    EP/Y02348X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Research Grant
Sustainable catalysis using palladium and gold compounds recovered from waste
使用从废物中回收的钯和金化合物进行可持续催化
  • 批准号:
    2887196
  • 财政年份:
    2023
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Studentship
CAREER: Advancing Light-mediated Ni Catalysis using Data Science and Physical Organic Techniques
职业:利用数据科学和物理有机技术推进光介导镍催化
  • 批准号:
    2235778
  • 财政年份:
    2023
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Continuing Grant
Design of Low-temperature Oxidation Catalysis using Catalyst Nano-Assembly
使用催化剂纳米组件的低温氧化催化设计
  • 批准号:
    22H01866
  • 财政年份:
    2022
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Organometallic chemistry and catalysis using 3d metals
使用 3d 金属的有机金属化学和催化
  • 批准号:
    RGPIN-2019-06576
  • 财政年份:
    2022
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Collaborative Research: An Engineering Design Approach for the Tandem Catalysis of Carbon Dioxide (CO2) using Nanoporous Bi-layer Structures
RUI:协作研究:利用纳米多孔双层结构串联二氧化碳(CO2)催化的工程设计方法
  • 批准号:
    2207302
  • 财政年份:
    2022
  • 资助金额:
    $ 49.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了