Black Silicon Photovoltaics
黑硅光伏
基本信息
- 批准号:EP/R005303/1
- 负责人:
- 金额:$ 121.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Urgent efforts are required to reduce the cost of renewable energy in order to tackle the worst effects of climate change. The fastest growing renewable energy technology is photovoltaics (PV), which will account for 30% of global power generation capacity in the coming decades. Silicon PV, which currently accounts for more than 90% of the market, is a proven technology where significant technological improvements will ensure further price reductions and increased deployment. Improvement in cell power conversion efficiency is a key driving factor in reducing the cost of solar energy, which this proposal aims to achieve by developing industrially-compatible optical enhancement, surface passivation and emitter formation techniques for silicon solar cells.The methods developed as part of this project will be applied to the leading solar cell technologies based on mono- (c-Si) and multi-crystalline silicon (mc-Si). For c-Si, this is a rear junction (RJ) architecture also known as the interdigitated back contact cell, and for mc-Si, this is a front junction (FJ) architecture. To enhance the RJ cell technology, where the p-n junction is at the back of the cell and unaffected by the front surface texturing, the approach is to use a solution-based texturing technique that leads to optically black silicon surfaces. For the case of the FJ cell architecture, where formation of the p-n junction at the front surface alongside texturing has to be considered, gas-phase processes will be investigated. Upon developing effective antireflective surfaces for RJ and FJ solar cells the challenge becomes transferring the gain in photon capture to improvements in the efficiency of the cell. For this to take place the electrical properties of the surface must be studied, and methods developed to mitigate any electrical degradation due to the texturing processes. This project is uniquely positioned to address jointly the optical and electrical properties of the cells, and by doing so, aims to produce optimally textured surfaces that can be easily integrated into the manufacture of solar cells.The project teams at Southampton and Oxford will draw on their close collaborations with the world-leading research institutes at Fraunhofer ISE, Germany, and UNSW, Australia. This will enable the demonstration of the proposed texturing technology on state-of-the-art silicon solar cells, as well as providing access to advanced techniques in characterisation and processing. These collaborations will also promote knowledge transfer to the UK research community. A core principle of this proposal is to contribute to improving industrial solar cell production. For this, two strategic industrial collaborations have been established. Firstly Tetreon Technologies, the leading UK manufacturer of industrial tools for solar cell production, will be closely involved in the project, with the aim of subsequently developing industrial equipment and processes for export to the global market. Secondly Trina Solar, one of the world's largest cell manufacturers and the industrial leader in high efficiency cells, will provide insight into the market and industry needs that this project aims to address. They will demonstrate successful processes in an industrial environment from cell to module manufacture. Through these collaborations this project will leverage cutting edge expertise in the complementary areas of surface passivation and light trapping to tackle the challenge of developing photovoltaic technology. The project will deliver substantially improved efficiencies for silicon based solar cells and modules and, through close collaboration with UK and international companies, will allow the research undertaken to be rapidly exploited in the form of new tools and processes for export to the global solar industry. Alongside the expertise within the team, its academic and industrial networks form an ideal basis for the innovative and impactful research programme.
为了应对气候变化最严重的影响,需要采取紧急措施降低可再生能源的成本。发展最快的可再生能源技术是光伏发电(PV),未来几十年它将占全球发电量的30%。硅光伏目前占据市场 90% 以上,是一项经过验证的技术,重大技术改进将确保进一步降低价格和增加部署。提高电池功率转换效率是降低太阳能成本的关键驱动因素,该提案旨在通过开发工业兼容的硅太阳能电池光学增强、表面钝化和发射极形成技术来实现这一目标。作为该项目一部分开发的方法将应用于基于单晶硅 (c-Si) 和多晶硅 (mc-Si) 的领先太阳能电池技术。对于 c-Si,这是后结 (RJ) 架构,也称为叉指背接触电池,对于 mc-Si,这是前结 (FJ) 架构。为了增强 RJ 电池技术(其中 p-n 结位于电池背面且不受前表面纹理化的影响),该方法是使用基于溶液的纹理化技术,从而产生光学黑色的硅表面。对于 FJ 电池结构的情况,必须考虑在前表面形成 p-n 结以及纹理,因此将研究气相过程。在为 RJ 和 FJ 太阳能电池开发有效的抗反射表面时,面临的挑战是将光子捕获的增益转化为电池效率的提高。为此,必须研究表面的电性能,并开发方法来减轻纹理过程引起的电性能退化。该项目具有独特的定位,旨在共同解决电池的光学和电学特性,并通过这样做,旨在生产可轻松集成到太阳能电池制造中的最佳纹理表面。南安普顿和牛津的项目团队将利用与德国弗劳恩霍夫ISE和澳大利亚新南威尔士大学的世界领先研究机构的密切合作。这将使所提出的纹理技术在最先进的硅太阳能电池上得到演示,并提供先进的表征和加工技术。这些合作还将促进向英国研究界的知识转移。该提案的核心原则是为提高工业太阳能电池生产做出贡献。为此,建立了两项战略性产业合作。首先,英国领先的太阳能电池生产工业工具制造商 Tetreon Technologies 将密切参与该项目,旨在随后开发出口到全球市场的工业设备和工艺。其次,天合光能作为全球最大的电池制造商之一和高效电池行业的领导者,将深入了解该项目旨在解决的市场和行业需求。他们将展示工业环境中从电池到模块制造的成功流程。通过这些合作,该项目将利用表面钝化和光捕获互补领域的尖端专业知识来应对开发光伏技术的挑战。该项目将大幅提高硅基太阳能电池和模块的效率,并通过与英国和国际公司的密切合作,使所进行的研究能够以新工具和工艺的形式迅速得到利用,出口到全球太阳能行业。除了团队内部的专业知识外,其学术和工业网络还为创新和有影响力的研究项目奠定了理想的基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optoelectronic properties of ultrathin ALD silicon nitride and its potential as a hole-selective nanolayer for high efficiency solar cells
- DOI:10.1063/5.0023336
- 发表时间:2020-11
- 期刊:
- 影响因子:6.1
- 作者:E. Khorani;S. McNab;Tudor E. Scheul;Tasmiat Rahman;R. S. Bonilla;S. Boden;P. Wilshaw
- 通讯作者:E. Khorani;S. McNab;Tudor E. Scheul;Tasmiat Rahman;R. S. Bonilla;S. Boden;P. Wilshaw
Wavelength and angle resolved reflectance measurements of pyramidal textures for crystalline silicon photovoltaics
- DOI:10.1002/pip.3319
- 发表时间:2020-07-09
- 期刊:
- 影响因子:6.7
- 作者:Scheul, Tudor E.;Khorani, Edris;Boden, Stuart A.
- 通讯作者:Boden, Stuart A.
Controlling Surface Carrier Density via a PEDOT:PSS Gate: An Application to the Study of Silicon-Dielectric Interface Recombination
通过 PEDOT:PSS 门控制表面载流子密度:在硅电介质界面复合研究中的应用
- DOI:10.1002/solr.201800172
- 发表时间:2018
- 期刊:
- 影响因子:7.9
- 作者:Bonilla R
- 通讯作者:Bonilla R
High symmetry nano-photonic quasi-crystals providing novel light management in silicon solar cells
- DOI:10.1016/j.nanoen.2021.105874
- 发表时间:2021-06
- 期刊:
- 影响因子:17.6
- 作者:T. Mercier;Tasmiat Rahman;C. Krishnan;E. Khorani;P. Shaw;M. Pollard;S. Boden;P. Lagoudakis;
- 通讯作者:T. Mercier;Tasmiat Rahman;C. Krishnan;E. Khorani;P. Shaw;M. Pollard;S. Boden;P. Lagoudakis;
Integrated vortex beam emitter in the THz frequency range: Design and simulation
- DOI:10.1063/5.0010546
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Hailong Pi;Tasmiat Rahman;S. Boden;T. Ma;Jize Yan;X. Fang
- 通讯作者:Hailong Pi;Tasmiat Rahman;S. Boden;T. Ma;Jize Yan;X. Fang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Wilshaw其他文献
Peter Wilshaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Wilshaw', 18)}}的其他基金
Semi-insulating Silicon substrates for high frequency integrated circuits
高频集成电路用半绝缘硅衬底
- 批准号:
EP/F035721/1 - 财政年份:2008
- 资助金额:
$ 121.03万 - 项目类别:
Research Grant
相似国自然基金
Silicon-Tethered 分子内 Corey-Chaykovsky 反应和 Tandem Heterocyclopropylolefin 环化反应研究
- 批准号:20802044
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PFI-TT: Novel Silicon Photovoltaics for Efficient and Low-cost Conversion of Heat to Electricity
PFI-TT:新型硅光伏技术,可高效、低成本地将热能转化为电能
- 批准号:
2140694 - 财政年份:2022
- 资助金额:
$ 121.03万 - 项目类别:
Standard Grant
Nanoscale interface engineering for silicon-based tandem photovoltaics 1=Energy 2=Solar Technology
硅基串联光伏发电的纳米级界面工程 1=能源 2=太阳能技术
- 批准号:
2184157 - 财政年份:2019
- 资助金额:
$ 121.03万 - 项目类别:
Studentship
Thin films for silicon-based tandem photovoltaics 1=Energy 2=Solar Technology
用于硅基串联光伏发电的薄膜 1=能源 2=太阳能技术
- 批准号:
2166291 - 财政年份:2019
- 资助金额:
$ 121.03万 - 项目类别:
Studentship
Evaluation of impedance spectroscopy as a tool to characterize performance losses in silicon photovoltaics
阻抗谱作为表征硅光伏性能损失的工具的评估
- 批准号:
519751-2017 - 财政年份:2017
- 资助金额:
$ 121.03万 - 项目类别:
Engage Grants Program
Luminescent and electrically conductive nano-silicon for optoelectronics and photovoltaics
用于光电子和光伏发电的发光和导电纳米硅
- 批准号:
16K04898 - 财政年份:2016
- 资助金额:
$ 121.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Silicon Metal-Insulator-Semiconductor Photovoltaics with Atomic Layer Deposited Interfacial Layers
具有原子层沉积界面层的硅金属-绝缘体-半导体光伏
- 批准号:
1605129 - 财政年份:2016
- 资助金额:
$ 121.03万 - 项目类别:
Standard Grant
Effect of B and N isovalent impurities on the electronic transport of GaAs and GaP based alloys for silicon photonics and photovoltaics
B 和 N 等价杂质对硅光子和光伏用 GaAs 和 GaP 基合金电子输运的影响
- 批准号:
259237104 - 财政年份:2014
- 资助金额:
$ 121.03万 - 项目类别:
Research Grants
Gettering of impurities in silicon: delivering quantitative understanding to improve photovoltaics
去除硅中的杂质:提供定量理解以改进光伏发电
- 批准号:
EP/J01768X/2 - 财政年份:2013
- 资助金额:
$ 121.03万 - 项目类别:
Research Grant
Nanosphere Coatings on Silicon Thin Film Photovoltaics
硅薄膜光伏上的纳米球涂层
- 批准号:
1233151 - 财政年份:2012
- 资助金额:
$ 121.03万 - 项目类别:
Standard Grant
High Performance Flexible Silicon Photovoltaics: Studies of Multifaceted Engineering Platforms Enabled with Nanophotonic Light Management and Spectral Modification
高性能柔性硅光伏:通过纳米光子光管理和光谱修改实现的多方面工程平台的研究
- 批准号:
1202522 - 财政年份:2012
- 资助金额:
$ 121.03万 - 项目类别:
Continuing Grant














{{item.name}}会员




