Isaac Newton Institute for Mathematical Sciences
艾萨克·牛顿数学科学研究所
基本信息
- 批准号:EP/R014604/1
- 负责人:
- 金额:$ 1474.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematics, with its capacity for generality and abstract reasoning, is a subject that is unique in its ability to penetrate deep within other disciplines, to provide a common language for establishing communication channels between research communities, and in the longevity of its influence.The Isaac Newton Institute (INI) is an international hub for supporting mathematical sciences research of the highest quality and impact. It attracts world leading researchers, in all areas of mathematics and cognate disciplines, who interact through a variety of long and short thematic programmes as well as associated workshops, follow-on meetings and a plethora of one-off events. Based in Cambridge, and benefiting from a bespoke and iconic building as well as many world-leading facilities of Cambridge University, INI is nevertheless an independent forum serving the whole of UK mathematical sciences. INI celebrates its 25th anniversary this year.To the end of 2016 there had been 129 long-term programmes in total, and over 26,000 INI programme and workshop participants including 81 Rothschild Visiting Professors/Fellows, from Wolf Prize winner Vladimir Arnold in 1992 to Dijkstra Prize winning theoretical computer scientist Cynthia Dwork in 2016. Participants have also included 27 Fields Medalists, 13 Nobel Laureates, 12 Abel Prize winners, 25 Wolf Prize winners and over 50 Clay Senior Scholars as well as numerous winners of major prizes in other disciplines. This does not include unregistered participants, who are welcome to drop-in to events for a couple of days at a time.INI gives UK researchers unparalleled opportunities to work with one another and with a critical mass of leading international figures in their field, unencumbered by teaching or administrative duties. It maximizes potential for knowledge exchange and the dissemination of UK research achievements, while exposing UK early career researchers to world leaders in their discipline.A common strategic position of all Research Councils is to emphasise the importance of innovative mathematical and statistical methods to their science and in the training of young researchers. From its inception, INI's programmes and embedded workshops were demonstrably intra or interdisciplinary and conceived to accelerate research impact within the mathematical and sister sciences. Recently INI has broadened its remit to address fundamental questions in the social sciences, medicine etc. It has also concerned itself with the instigation of mechanisms to support diversity and gender equality in the sciences, and to nurture early career researchers so as to enlarge the people pipeline. The Turing Gateway to Mathematics (TGM) was created in 2013 as the knowledge exchange arm of INI. Since then it has brought the mathematical sciences community together with an impressive range of over 700 partners in business, industry, commerce and government. It has a proven set of pathways to impact, and partners with a range of organisations to assist the whole of the mathematical sciences community. Public engagement events are regularly hosted at INI, including its Rothschild Public Seminars. In addition to the 25th Anniversary events being held at the Institute, a highlight of which will be a discussion between Sir Andrew Wiles and his biographer Simon Singh, INI is organising a "road show" across the UK including talks by Keith Moore, Librarian at the Royal Society, and leading British space scientists. INI is committed to the maintenance of a reputation for creativity and mathematical excellence. This will mean continuing to deliver ground-breaking research of the highest international standard, supporting the UK mathematical sciences community both in academe and beyond, and further extending the reach of mathematics into other disciplines and applications via TGM. Throughout it will strive to maintain the culture of creativity and achievement for which it is widely recognised.
数学具有普遍性和抽象推理的能力,是一门独特的学科,它能够深入渗透到其他学科,为研究社区之间建立沟通渠道提供共同语言,并在其影响力的长寿。艾萨克·牛顿研究所(INI)是支持最高质量和影响力的数学科学研究的国际中心。它吸引了世界领先的研究人员,在数学和同源学科的所有领域,谁通过各种长期和短期的主题方案以及相关的研讨会,后续会议和一次性活动的过多互动。总部设在剑桥,并受益于定制和标志性的建筑以及剑桥大学的许多世界领先的设施,INI仍然是一个独立的论坛,服务于整个英国的数学科学。今年是INI成立25周年。截至2016年底,INI共举办了129个长期项目,超过26,000名INI项目和研讨会参与者,其中包括81名罗斯柴尔德客座教授/研究员,从1992年的沃尔夫奖赢家弗拉基米尔阿诺德到2016年的迪杰斯特拉奖获得者理论计算机科学家辛西娅·德沃克。与会者还包括27名菲尔兹奖获得者,13名诺贝尔奖获得者,12名阿贝尔奖获得者,25名沃尔夫奖获得者和50多名克莱高级学者以及其他学科的众多主要奖项获得者。这不包括未注册的参与者,欢迎他们一次参加几天的活动。INI为英国研究人员提供了无与伦比的机会,使他们能够相互合作,并与他们所在领域的大量国际领先人物合作,不受教学或行政职责的阻碍。它最大限度地提高了知识交流和英国研究成果传播的潜力,同时使英国早期职业研究人员接触到他们学科的世界领导者。所有研究理事会的共同战略立场是强调创新数学和统计方法对他们的科学和年轻研究人员的培训的重要性。从一开始,INI的课程和嵌入式研讨会就明显是内部或跨学科的,旨在加速数学和姐妹科学的研究影响。最近,国家研究所扩大了其职权范围,以解决社会科学、医学等方面的基本问题,它还致力于推动各种机制,以支持科学领域的多样性和性别平等,并培养早期职业研究人员,以扩大人才管道。图灵数学门户(TGM)成立于2013年,是INI的知识交流机构。从那时起,它将数学科学界与商业,工业,商业和政府的700多个合作伙伴联系在一起。它有一套行之有效的影响途径,并与一系列组织合作,以协助整个数学科学界。INI定期举办公众参与活动,包括罗斯柴尔德公共研讨会。除了在研究所举行的25周年纪念活动,其中一个亮点将是安德鲁·怀尔斯爵士和他的传记作者西蒙·辛格之间的讨论,INI正在英国各地组织一次“路演”,包括皇家学会图书馆馆长基思摩尔和英国领先的空间科学家的会谈。INI致力于维护创造力和数学卓越的声誉。这将意味着继续提供最高国际标准的突破性研究,支持英国数学科学界在爱丁堡和其他地方,并通过TGM进一步将数学的影响力扩展到其他学科和应用。在整个过程中,它将努力保持它被广泛认可的创造力和成就的文化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypocoercivity and hypocontractivity concepts for linear dynamical systems
线性动力系统的低矫顽力和低收缩性概念
- DOI:10.13001/ela.2023.7531
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Achleitner F
- 通讯作者:Achleitner F
High-contrast approximation for penetrable wedge diffraction
可穿透楔形衍射的高对比度近似
- DOI:10.1093/imamat/hxaa011
- 发表时间:2020
- 期刊:
- 影响因子:1.2
- 作者:Abrahams I
- 通讯作者:Abrahams I
An explicit Wiener-Hopf factorization algorithm for matrix polynomials and its exact realizations within ExactMPF package.
矩阵多项式的显式Wiener-HOPF分解算法及其在ExactMPF软件包中的确切实现。
- DOI:10.1098/rspa.2021.0941
- 发表时间:2022-07
- 期刊:
- 影响因子:3.5
- 作者:Adukov, V. M.;Adukova, N. V.;Mishuris, G.
- 通讯作者:Mishuris, G.
Reinvigorating the Wiener-Hopf technique in the pursuit of understanding processes and materials.
重振维纳-霍普夫技术以追求对工艺和材料的理解
- DOI:10.1093/nsr/nwaa225
- 发表时间:2021-03
- 期刊:
- 影响因子:20.6
- 作者:Abrahams D;Huang X;Kisil A;Mishuris G;Nieves M;Rogosin S;Spitkovsky I
- 通讯作者:Spitkovsky I
On effective criterion of stability of partial indices for matrix polynomials
- DOI:10.1098/rspa.2020.0012
- 发表时间:2020-06-24
- 期刊:
- 影响因子:3.5
- 作者:Adukova, N. V.;Adukov, V. M.
- 通讯作者:Adukov, V. M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
I Abrahams其他文献
I Abrahams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('I Abrahams', 18)}}的其他基金
Additional Funding for Mathematical Sciences: Isaac Newton Institute for Mathematical Sciences
数学科学额外资助:艾萨克·牛顿数学科学研究所
- 批准号:
EP/V521929/1 - 财政年份:2020
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
Ultrasonic propagation in complex media: correlated spatial distributions and multiple dispersed phases
复杂介质中的超声波传播:相关空间分布和多个分散相
- 批准号:
EP/M026205/1 - 财政年份:2015
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
MAPLE: MAthematics PLatform Engagement activity
MAPLE:数学平台参与活动
- 批准号:
EP/I01912X/1 - 财政年份:2011
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
'How to Talk Maths in Public' a Conference on Public Engagement
“如何在公共场合谈论数学”公众参与会议
- 批准号:
EP/H046852/1 - 财政年份:2010
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
Meet The Mathematicians Outreach Events
认识数学家外展活动
- 批准号:
EP/G019576/1 - 财政年份:2008
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
The Second British-French Workshop on Mathematical Techniques for Wave Problems
第二届英法波浪问题数学技术研讨会
- 批准号:
EP/E000266/1 - 财政年份:2006
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
相似国自然基金
Newton空间上的Toeplitz算子的交换性
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Newton法求解耦合代数Riccati方程的数值算法研究
- 批准号:LQ21A010006
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
具有Newton型弱力势的多体问题的研究
- 批准号:11671278
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
二维Newton-Boussinesq方程解的几种吸引子的存在性研究
- 批准号:11426171
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
黎曼流形和李群上基于回拉的Newton类算法的研究及其应用
- 批准号:11371325
- 批准年份:2013
- 资助金额:62.0 万元
- 项目类别:面上项目
针对辐射流体的区域分解预处理Newton-Krylov方法研究
- 批准号:11171039
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
基于XMM-Newton和Chandra卫星数据的星系团样本的统计研究
- 批准号:11003018
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Newton 型算法的进一步研究
- 批准号:10471036
- 批准年份:2004
- 资助金额:18.0 万元
- 项目类别:面上项目
基于Newton法的新型惯性算法研究
- 批准号:10126024
- 批准年份:2001
- 资助金额:2.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
Dispersive Hydrodynamics Program at the Isaac Newton Institute
艾萨克·牛顿研究所的分散流体动力学项目
- 批准号:
1941489 - 财政年份:2020
- 资助金额:
$ 1474.28万 - 项目类别:
Standard Grant
Additional Funding for Mathematical Sciences: Isaac Newton Institute for Mathematical Sciences
数学科学额外资助:艾萨克·牛顿数学科学研究所
- 批准号:
EP/V521929/1 - 财政年份:2020
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
Symplectic Geometry Workshop at the Isaac Newton Institute
艾萨克·牛顿研究所辛几何研讨会
- 批准号:
1727545 - 财政年份:2017
- 资助金额:
$ 1474.28万 - 项目类别:
Standard Grant
Isaac Newton Institute Program on Melt in the Mantle
艾萨克·牛顿研究所地幔融化项目
- 批准号:
1619535 - 财政年份:2016
- 资助金额:
$ 1474.28万 - 项目类别:
Standard Grant
Random Geometry at the Isaac Newton Institute, University of Cambridge
剑桥大学艾萨克·牛顿研究所的随机几何
- 批准号:
471131-2014 - 财政年份:2014
- 资助金额:
$ 1474.28万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Isaac Newton Institute for Mathematical Sciences
艾萨克·牛顿数学科学研究所
- 批准号:
EP/K032208/1 - 财政年份:2014
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences - Cross Council Science
艾萨克·牛顿数学科学研究所 - 跨理事会科学
- 批准号:
EP/I016392/1 - 财政年份:2011
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
Isaac Newton Institute Programme on Gyrokinetics in Laboratory and Astrophysical Plasmas (Urgency Scheme)
艾萨克·牛顿研究所实验室和天体物理等离子体回旋运动学项目(紧急计划)
- 批准号:
ST/I002138/1 - 财政年份:2010
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences
艾萨克·牛顿数学科学研究所
- 批准号:
EP/F005431/1 - 财政年份:2008
- 资助金额:
$ 1474.28万 - 项目类别:
Research Grant














{{item.name}}会员




