A whole-heart model of multiscale soft tissue mechanics and fluid structure interaction for clinical applications (Whole-Heart-FSI)

用于临床应用的多尺度软组织力学和流体结构相互作用的全心脏模型(Whole-Heart-FSI)

基本信息

  • 批准号:
    EP/S020950/1
  • 负责人:
  • 金额:
    $ 166.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

Heart disease is the leading cause of disability and death in the UK and worldwide, resulting in enormous health care costs. Risk prediction on an individual patient basis is imperfect. Advanced medical development has already saved many lives, particularly in systolic heart failure. However, there is currently no treatment option for diastolic heart failure (with preserved ejection fraction) due to its complexity of multiple mechanisms and co-modality. Structural heart diseases, such as myocardial infarction (MI- commonly known as heart attack) and mitral regurgitation (MR, a leakage of blood through the mitral valve to left atrium in systole), where biomechanical factors are crucial, are often precursors to heart failure. MI can eventually lead to dilated heart failure despite immediate treatments post-MI. MR can induce pulmonary hypertension and oedema and subsequently, right heart overload and heart failure. The grand challenge is for these situations the heart simply cannot be modelled as an isolated left ventricle (as in most of the current studies); flow-structure interaction (FSI), heart-valve interaction, multiscale soft tissue mechanics, and tissue growth and remodelling (G&R) all play important roles in the progression of the structural diseases. This project is set up to meet this challenge by delivering a multiscale computational framework to include Whole-Heart FSI with G&R. Making use of the novel mathematical tools (constitutive laws, G&R, upscaling and statistical inference) developed by SofTMech, I will build a realistic four-chamber heart model that include heart-valve, chamber-chamber, heart-blood, and heart-circulation interactions, which will be powerful enough to model MI, MR and their pathological consequences. This work will be in close collaboration with my clinical, industrial and academic collaborators. The model will quantify which factors lead to adverse G&R and what variations are to be expected as the disease progresses. We will also identify significant biomechanical markers (e.g. constitutive parameters, energy indices, stress/strain evolution). The predictive values of these biomechanical parameters will be assessed against other established predictors of adverse remodellings, such as duration of ischaemia, final coronary flow grade after a primary percutaneous coronary intervention, and microvascular obstruction revealed by MRI. Thus, this project will generate new testable hypotheses and will be a significant step up towards more consistent decision-support for clinicians, since increasingly the pace and complexity of medical advances outstrip the ability of individual clinicians to cope with. Due to the statistical emulation and uncertainty quantification built into the project, the model predictions will be fast and quantified with error bounds on the outcome of alternative treatments. Consequently, we will also address the critical aspect of convincing clinicians that information obtained from simulations will be correct and relevant to their daily practice. The proposed research is right within the Healthcare Technologies "Optimising Treatment" and "Developing Future Therapies" priority areas, as well as targeting "New Connections from Mathematical Sciences", and "Statistics and Applied Probability" of Mathematical Sciences.
心脏病是英国和世界范围内残疾和死亡的主要原因,导致巨大的医疗保健费用。基于个体患者的风险预测是不完善的。先进的医学发展已经挽救了许多生命,特别是在收缩性心力衰竭方面。然而,由于舒张性心力衰竭(射血分数保留)的多种机制和共同模态的复杂性,目前没有治疗选择。结构性心脏病,如心肌梗死(MI-通常称为心脏病发作)和二尖瓣返流(MR,收缩期血液通过二尖瓣渗漏到左心房),其中生物力学因素至关重要,通常是心力衰竭的前兆。尽管MI后立即治疗,但MI最终可导致扩张性心力衰竭。二尖瓣返流可引起肺动脉高压和水肿,继而导致右心负荷过重和心力衰竭。最大的挑战是,对于这些情况,心脏根本不能被建模为一个孤立的左心室(如在大多数目前的研究);流动-结构相互作用(FSI),心脏瓣膜相互作用,多尺度软组织力学,组织生长和重塑(G&R)都在结构性疾病的进展中发挥重要作用。该项目旨在通过提供一个多尺度计算框架来应对这一挑战,以包括具有G&R的全心脏FSI。利用SofTMech开发的新颖的数学工具(本构律,G&R,放大和统计推断),我将建立一个逼真的四腔心脏模型,包括心脏瓣膜,腔室,心脏血液和心脏循环的相互作用,这将是强大的,足以模拟MI,MR及其病理后果。这项工作将与我的临床,工业和学术合作者密切合作。该模型将量化哪些因素导致不良G&R以及随着疾病进展预期会发生哪些变化。我们还将确定重要的生物力学标记(例如,本构参数,能量指数,应力/应变演变)。这些生物力学参数的预测值将根据其他已确定的不良重塑预测因子进行评估,例如缺血持续时间、初次经皮冠状动脉介入治疗后的最终冠状动脉血流分级和MRI显示的微血管阻塞。因此,该项目将产生新的可测试的假设,并将是朝着更一致的决策支持临床医生迈出的重要一步,因为越来越多的速度和复杂性的医学进步超出了个人临床医生的能力,以科普。由于项目中内置的统计仿真和不确定性量化,模型预测将是快速的,并对替代治疗的结果进行量化。因此,我们还将解决说服临床医生从模拟中获得的信息将是正确的,并与他们的日常实践相关的关键方面。拟议的研究是正确的医疗保健技术“优化治疗”和“开发未来疗法”的优先领域,以及针对“数学科学的新联系”和“统计和应用概率”的数学科学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluid-structure interaction in a fully coupled three-dimensional mitral-atrium-pulmonary model.
Surrogate models based on machine learning methods for parameter estimation of left ventricular myocardium.
基于机器学习方法的左心室心肌参数估计替代模型
  • DOI:
    10.1098/rsos.201121
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Cai L;Ren L;Wang Y;Xie W;Zhu G;Gao H
  • 通讯作者:
    Gao H
Nonlinear indentation of second-order hyperelastic materials
  • DOI:
    10.1016/j.jmps.2022.105139
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Yangkun Du;P. Stewart;N. Hill;Huabing Yin;R. Penta;J. Köry;Xiaoyu Luo;R. Ogden
  • 通讯作者:
    Yangkun Du;P. Stewart;N. Hill;Huabing Yin;R. Penta;J. Köry;Xiaoyu Luo;R. Ogden
Fluid-structure interaction simulation of pathological mitral valve dynamics in a coupled mitral valve-left ventricle model
MV-LV 耦合模型中病态 MV 动力学的流固耦合模拟
  • DOI:
    10.1016/j.imed.2022.06.005
  • 发表时间:
    2023-06-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cai,Li;Zhao,Tong;Gao,Hao
  • 通讯作者:
    Gao,Hao
Whole-heart modelling with valves in a fluid-structure interaction framework
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XiaoYu Luo其他文献

Investigation into the tribological behaviors of press hardening steels on the tailored conditions
研究热成型钢在定制条件下的摩擦学行为
  • DOI:
    10.1007/s11431-014-5722-y
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ZiJian Wang;XiaoYu Luo;WenTing He;YiSheng Zhang
  • 通讯作者:
    YiSheng Zhang

XiaoYu Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XiaoYu Luo', 18)}}的其他基金

SofTMech with MIT and POLIMI (SofTMechMP)
SofTMech 与 MIT 和 POLIMI (SofTMechMP)
  • 批准号:
    EP/S030875/1
  • 财政年份:
    2020
  • 资助金额:
    $ 166.25万
  • 项目类别:
    Research Grant
Growth and Remodelling in the Porcine Heart-- Pushing Mathematics through Experiments
猪心脏的生长和重塑——通过实验推动数学发展
  • 批准号:
    EP/S014284/1
  • 财政年份:
    2019
  • 资助金额:
    $ 166.25万
  • 项目类别:
    Research Grant
Finite element-immersed boundary method and its application to mitral valves
有限元浸入边界法及其在二尖瓣中的应用
  • 批准号:
    EP/I029990/1
  • 财政年份:
    2012
  • 资助金额:
    $ 166.25万
  • 项目类别:
    Research Grant
Exploring the Mechanisms of Human Gallbladder Pain
探索人类胆囊疼痛的机制
  • 批准号:
    EP/G015651/1
  • 财政年份:
    2009
  • 资助金额:
    $ 166.25万
  • 项目类别:
    Research Grant

相似国自然基金

SIRT2在灵长类心肌衰老进程中的作用及其机制研究
  • 批准号:
    32000510
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
心衰中miR214调控Junctophilin-2的机制研究
  • 批准号:
    81170225
  • 批准年份:
    2011
  • 资助金额:
    14.0 万元
  • 项目类别:
    面上项目
抑制 miR-21 (微小RNA-21) 过表达对心肌重构和心力衰竭改善和治疗作用的研究
  • 批准号:
    81070128
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
心脏超声造影的安全性研究
  • 批准号:
    30870721
  • 批准年份:
    2008
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
e-Heart仿真平台及关键技术研究
  • 批准号:
    60571025
  • 批准年份:
    2005
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
婴儿复杂型先心病无创心内三维虚拟现实诊断方法研究
  • 批准号:
    30371497
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Synergistically Target Mitochondria for Heart Failure Treatment
协同靶向线粒体治疗心力衰竭
  • 批准号:
    10584938
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
  • 批准号:
    10753822
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
Mechanisms of cardiomyocyte dysfunction in pediatric septic shock
小儿感染性休克心肌细胞功能障碍的机制
  • 批准号:
    10580624
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
Ethnically Diverse iPSC-Cardiomyocyte Panel for Pharmacogenomics and Drug Safety Testing
用于药物基因组学和药物安全性测试的种族多样化 iPSC-心肌细胞小组
  • 批准号:
    10755624
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
TOPMed WGS and Molecular Epidemiology Analyses for Cardiac Hypertrophy Phenotypes
心脏肥大表型的 TOPMed WGS 和分子流行病学分析
  • 批准号:
    10930193
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
Developing a Novel Clinical Care Model for Chronic Patellar Tendinopathy Utilizing Whole Person Healthcare
利用全人医疗保健开发慢性髌腱病的新型临床护理模式
  • 批准号:
    10739428
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
Investigating whole-body innate immune activation in Alzheimer's disease using PET imaging and immune profiling
使用 PET 成像和免疫分析研究阿尔茨海默病的全身先天免疫激活
  • 批准号:
    10749393
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
From Variants to Mechanisms for Cardiac Arrhythmias
从心律失常的变异到机制
  • 批准号:
    10719850
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
  • 批准号:
    10717244
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
Elucidating anti-angiogenic tyrosine kinase inhibitor-induced vascular dysfunction
阐明抗血管生成酪氨酸激酶抑制剂诱导的血管功能障碍
  • 批准号:
    10570393
  • 财政年份:
    2023
  • 资助金额:
    $ 166.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了