Workshop "Twistor Theory and Beyond", 29 June - 1 July 2020, Cambridge
“扭转理论及其他”研讨会,2020 年 6 月 29 日至 7 月 1 日,剑桥
基本信息
- 批准号:EP/T031026/1
- 负责人:
- 金额:$ 0.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Twistor theory was born out of Sir Roger Penrose's intuition that space-time is not the fundamental arena of physics. Instead, the fundamental arena is twistor space, and the space-time formulation of physics is emergent. The mathematical structure of twistor space, where light-rays rather than space-time points take the leading role, provides an ideal home for some of the most fundamental theories of physics, such as general relativity and gauge theory. The original idea was that important problems in theoretical physics, especially the problem of quantum gravity, would be clarified by a formulation of the laws of physics in twistor space.As with many great ideas, twistor theory developed in a variety of directions in mathematics and physics, which were not anticipated by its original developers. On the mathematical side, its powerful methods have been applied to differential and integral geometry, to the analysis of differential equations and to representation theory. On the physics side, its application to general relativity and quantum field theory has been given a renewed impetus with the notion of string theories living in twistor space, as well as with the recent realisation that twistor variables simplify the description of certain experiments in particle scattering.This vast range of applications provides a perfect ground for interdisciplinary collaboration among diverse research communities.
扭曲理论诞生于罗杰·彭罗斯爵士的直觉,即时空不是物理学的基本竞技场。相反,基本的竞技场是扭量空间,物理学的时空表述是涌现的。扭量空间的数学结构是光线而不是时空点起主导作用,它为一些最基本的物理学理论提供了理想的家园,如广义相对论和规范理论。最初的想法是理论物理学中的重要问题,特别是量子引力问题,可以通过在扭量空间中的物理定律的公式来澄清。和许多伟大的想法一样,扭量理论在数学和物理学中向各种方向发展,这是它的最初开发者没有预料到的。在数学方面,其强大的方法已被应用于微分和积分几何,微分方程的分析和表示论。在物理学方面,它在广义相对论和量子场论中的应用,随着扭量空间中的弦理论概念的提出,以及扭量变量简化了粒子散射实验描述的最新认识,得到了新的推动。这种广泛的应用为不同研究领域之间的跨学科合作提供了完美的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Jorge Ferreira Monteiro其他文献
Ricardo Jorge Ferreira Monteiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Twistor 空间及相关复几何问题
- 批准号:11501505
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
Twistor型旋量及其应用
- 批准号:11301202
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
- 批准号:
20K03575 - 财政年份:2020
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized Hodge theory from the twistor perspective
扭量视角下的广义霍奇理论
- 批准号:
20K03609 - 财政年份:2020
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Twistor theory in Submanifold geometry
子流形几何中的扭量理论
- 批准号:
16K05119 - 财政年份:2016
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening and merging twistor theory for indefinite or exceptional structure groups
不定或特殊结构群的深化和融合扭量理论
- 批准号:
16K05118 - 财政年份:2016
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Twistor transform for indefinite Grassmannian manifolds and the theory of infinite-dimensional representations
不定格拉斯曼流形的扭转变换和无限维表示理论
- 批准号:
23540073 - 财政年份:2011
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on relations between differential equations and geometric structures by the method of twistor theory
用扭量理论方法研究微分方程与几何结构的关系
- 批准号:
22540109 - 财政年份:2010
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Frobenius manifolds, twistor structures and singularity theory
弗罗贝尼乌斯流形、扭量结构和奇点理论
- 批准号:
174861128 - 财政年份:2010
- 资助金额:
$ 0.68万 - 项目类别:
Heisenberg Fellowships
Construction of theory of non-commutative partial differential equations by Schwarzian and twistor methods
用 Schwarzian 和扭量方法构造非交换偏微分方程理论
- 批准号:
21540076 - 财政年份:2009
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The foundations of twistor-string theory
扭弦理论的基础
- 批准号:
EP/F016654/1 - 财政年份:2008
- 资助金额:
$ 0.68万 - 项目类别:
Research Grant