Diagnosing multiscale entrainment in density-driven flows in the ocean

诊断海洋中密度驱动流的多尺度夹带

基本信息

  • 批准号:
    NE/G000212/1
  • 负责人:
  • 金额:
    $ 7.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

It is well-known in ocean modelling that small scale mixing processes in density-driven flows that take place in the ocean are crucial for the global ocean circulation (and hence climate), but the scale of mixing is much smaller than one grid cell in global ocean circulation models (where the number of cells is constrained by the limits of computer power). These processes include the rapid sinking of dense (cold/salty) water due to storms and ice formation at the ocean surface (such as takes place in the Labrador Sea), and the flow of dense water over steep slopes in the ocean floor. The solution to this is to apply physical knowledge of these processes so that their effects can be prescribed in the global models (this is called parameterisation). A key quantity which must be accurately predicted is the entrainment into these flows. If one considers hot air rising from a factor chimney, then it is possible to predict how high and how fast the air will rise based on the difference between the density of the hot air and the lower density of the surroundings. As the air rises, the flow becomes turbulent, and air from the surroundings is mixing into the hot air, changing the density: this is called entrainment. In the case of many small scale mixing processes in the ocean, it is hard to predict the entrainment (because the effect of the rotation of the Earth is important, and the dynamics is rather complicated). The aim of this project is to build up a complete picture of small scale mixing in these density-driven flows by studying data from idealised models of these flows. We will use data obtained from the Imperial College Ocean Model (ICOM), which has a dynamically changing grid that is very suitable for studying these problems. The key concept will be Lagrangian particle trajectories: the paths that fluid particles take as they move with the flow. Following these paths reveals how water from the surroundings is mixed into the flow. The first part of the project will be to build a computational tool for computing Lagrangian particle trajectories on large datasets obtained from ocean models. The main challenge is to produce a code which can be run on a computer with many processors, although the basic strategy for this is well-developed and so one can make use of existing software to take care of the parallel aspects. The second part of the project is to apply a range of techniques to studying the particle trajectories to identify the key mixing processes in the density-driven flows. A complete picture of the mixing will be produced which can then be used to develop parameterisations for use in global ocean models.
众所周知,在海洋建模中,海洋中发生的密度驱动流动中的小尺度混合过程对全球海洋环流(以及气候)至关重要,但混合的尺度远远小于全球海洋环流模型中的一个网格单元(其中单元的数量受到计算机能力的限制)。这些过程包括由于风暴和海洋表面的冰形成(如拉布拉多海)而导致的稠密(冷/咸)水的快速下沉,以及稠密水在海底陡坡上的流动。解决这个问题的方法是应用这些过程的物理知识,以便在全球模型中规定它们的影响(这称为参数化)。必须准确预测的一个关键量是进入这些流动的夹带。如果考虑热空气从因子烟囱上升,那么可以根据热空气的密度与周围环境的较低密度之间的差异来预测空气将上升多高和多快。当空气上升时,流动变得湍流,周围的空气混合到热空气中,改变密度:这称为夹带。在海洋中许多小尺度混合过程的情况下,很难预测夹带(因为地球旋转的影响很重要,动力学相当复杂)。该项目的目的是通过研究这些流动的理想化模型的数据,建立这些密度驱动的流动中的小尺度混合的完整图像。我们将使用从帝国理工学院海洋模型(Imperial College Ocean Model,缩写为EMOM)获得的数据,该模型具有动态变化的网格,非常适合研究这些问题。关键的概念是拉格朗日粒子轨迹:流体粒子随着流动而移动的路径。沿着这些路径可以发现周围的水是如何混合到水流中的。该项目的第一部分将是建立一个计算工具,用于在从海洋模型获得的大型数据集上计算拉格朗日粒子轨迹。主要的挑战是产生一个可以在具有许多处理器的计算机上运行的代码,尽管基本策略已经开发得很好,因此可以利用现有的软件来处理并行方面。该项目的第二部分是应用一系列技术来研究颗粒轨迹,以确定密度驱动流中的关键混合过程。将绘制一幅关于混合的完整图像,然后可用于制定参数,供全球海洋模型使用。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating eddy diffusivities from noisy Lagrangian observations
根据嘈杂的拉格朗日观测估计涡流扩散率
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Cotter其他文献

A mixed finite-element, finite-volume, semi-implicit discretisation for atmospheric dynamics: Spherical geometry
大气动力学的混合有限元、有限体积、半隐式离散:球面几何
  • DOI:
    10.48550/arxiv.2402.13738
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Melvin;Ben Shipway;Nigel Wood;Tommaso Benacchio;T. Bendall;I. Boutle;Alex Brown;Christine Johnson;James Kent;Stephen Pring;Chris Smith;M. Zerroukat;Colin Cotter;J. Thuburn
  • 通讯作者:
    J. Thuburn
Correction: Evaluation of mAb 2C5-modified dendrimer-based micelles for the co-delivery of siRNA and chemotherapeutic drug in xenograft mice model
  • DOI:
    10.1007/s13346-024-01601-1
  • 发表时间:
    2024-04-18
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Satya Siva Kishan Yalamarty;Nina Filipczak;Tanvi Pathrikar;Colin Cotter;Janaína Artem Ataide;Ed Luther;Swarali Paranjape;Vladimir Torchilin
  • 通讯作者:
    Vladimir Torchilin
On the calibration of multilevel Monte Carlo ensemble forecasts
多级蒙特卡罗集合预报的校准
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alastair Gregory;Colin Cotter
  • 通讯作者:
    Colin Cotter
Variational water-wave model with accurate dispersion and vertical vorticity
  • DOI:
    10.1007/s10665-009-9346-3
  • 发表时间:
    2009-10-28
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Colin Cotter;Onno Bokhove
  • 通讯作者:
    Onno Bokhove

Colin Cotter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Cotter', 18)}}的其他基金

Parallel-in-time computation for sedimentary landscapes
沉积景观的并行时间计算
  • 批准号:
    EP/W015439/1
  • 财政年份:
    2022
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Next generation particle filters for stochastic partial differential equations
用于随机偏微分方程的下一代粒子滤波器
  • 批准号:
    EP/W016125/1
  • 财政年份:
    2022
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Parallel Paradigms for Numerical Weather Prediction
数值天气预报的并行范式
  • 批准号:
    NE/R008795/1
  • 财政年份:
    2018
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Moving meshes for global atmospheric modelling
用于全球大气建模的移动网格
  • 批准号:
    NE/M013634/1
  • 财政年份:
    2015
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Improving Prediction of Fronts
改进锋面预测
  • 批准号:
    NE/K012533/1
  • 财政年份:
    2014
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Next Generation Weather and Climate Prediction: Atmospheric Model Dynamical Core
下一代天气和气候预测:大气模型动力核心
  • 批准号:
    NE/I02013X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
A new approach to guaranteeing physical wave propagation on triangular meshes for numerical weather prediction
保证数值天气预报三角网格上物理波传播的新方法
  • 批准号:
    NE/I016007/1
  • 财政年份:
    2011
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Unstructured mesh dynamical core for atmospheric modelling using geophysically-optimal finite elements
使用地球物理最优有限元进行大气建模的非结构化网格动力核心
  • 批准号:
    NE/I000747/1
  • 财政年份:
    2010
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant

相似国自然基金

热力耦合方程组的并行多尺度算法
  • 批准号:
    11301329
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
  • 批准号:
    50876120
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目
ABR颗粒污泥的多尺度结构形态、理化特征与分子生态学解析
  • 批准号:
    50578012
  • 批准年份:
    2005
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Continuing Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Fellowship
Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
  • 批准号:
    EP/X032019/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Fellowship
CAREER: Multiscale Bacterial Transport in Porous Media
职业:多孔介质中的多尺度细菌传输
  • 批准号:
    2340501
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了