Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics

利用振动引起的软结构动力学功能材料的输运增强

基本信息

  • 批准号:
    EP/W017091/1
  • 负责人:
  • 金额:
    $ 872.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

In inorganic semiconductors, such as silicon, the interaction of electronic excitations with lattice vibrations is an undesirable perturbation; it limits charge carrier mobilities and mediates non-radiative recombination. In low-dimensional functional materials with non-covalent bonding the structural dynamics is not a mere perturbation, it moves centre-stage: Some vibrational modes are very soft and strongly anharmonic so that electronic processes occur in a strongly fluctuating structural landscape. The traditional view is that the resulting strong electron-vibrational coupling is also detrimental: In organic semiconductors (OSCs), for example, electronic charges and neutral electron-hole pairs (excitons) are localized by a 'cloud' of lattice deformations, which causes charge mobilities and exciton diffusion lengths to be undesirably small, thus limiting performance of optoelectronic devices. We have recently discovered systems in which this traditional paradigm does not hold, but in which the structural dynamics is highly beneficial and mediates surprisingly fast, long-range excitation transport. This runs completely against models developed for traditional semiconductors such as silicon, for which phonons limit electronic transport. The mechanism involves vibrational modes coupling localized states near the band edges to highly delocalised states within the bands that can then transport charges and energy over unprecedentedly long length scales. This unique transient delocalization regime, in which excitations are effectively able to "surf on the waves" of structural lattice distortions, is not found in silicon and was first discovered in OSCs. Our goal is to explore similar physics in other functional materials with soft structural dynamics, such as hybrid organic-inorganic perovskite (HOIP) semiconductors, 2D conjugated covalent/metal organic frameworks (COFs/MOFs) and inorganic ceramics and ion conductors.VISION AND AMBITION: In the proposed programme we aim to pursue this vibration-enhanced transport (VET) regime as a general paradigm for achieving fast and long-range electronic charge, ion and energy transport in a broad class of organic and inorganic, functional materials with soft structural dynamics. We will (i) develop new experimental/theoretical methodologies to achieve a deep fundamental understanding of the underpinning mechanisms for the vibration-enhanced transport, including identification and molecular engineering of the most effective vibrational modes mediating it, (ii) design new self-assembled functional materials in which transport length scales exceeding micrometers are achievable and (iii) exploit such long length scales to enable new device architectures and transformational device performance improvements in a broad range of (bio)electronic, optoelectronic, energy storage and photocatalytic applications.
在无机半导体中,例如硅,电子激发与晶格振动的相互作用是不期望的扰动;它限制电荷载流子迁移率并介导非辐射复合。在具有非共价键的低维功能材料中,结构动力学不仅仅是一种扰动,它移动到中心阶段:一些振动模式非常柔和,并且具有强烈的非谐性,因此电子过程发生在强烈波动的结构景观中。传统观点认为,由此产生的强电子-振动耦合也是有害的:例如,在有机半导体(OSC)中,电子电荷和中性电子-空穴对(激子)通过晶格变形的“云”而局部化,这导致电荷迁移率和激子扩散长度不合需要地小,从而限制了光电器件的性能。我们最近发现的系统中,这种传统的范式不成立,但其中的结构动力学是非常有益的,并介导令人惊讶的快速,长距离的激发运输。这完全违背了为硅等传统半导体开发的模型,因为声子限制了电子传输。该机制涉及振动模式耦合带边缘附近的局域态到带内的高度离域态,然后可以在前所未有的长尺度上传输电荷和能量。这种独特的瞬态离域机制,其中激发能够有效地“冲浪”的结构晶格扭曲,是没有发现在硅中,并首次发现在OSC。我们的目标是在具有软结构动力学的其他功能材料中探索类似的物理,例如杂化有机-无机钙钛矿(HOIP)半导体,2D共轭共价/金属有机框架(COFs/MOFs)和无机陶瓷及离子导体。愿景与抱负:在拟议的计划中,我们的目标是追求这种振动增强运输(VET)制度作为一个通用的范例,实现快速和长期的,范围电子电荷,离子和能量传输在一个广泛的有机和无机,功能材料与软结构动力学。我们将(i)开发新的实验/理论方法,以实现对振动增强传输的基础机制的深刻基本理解,包括识别和介导它的最有效振动模式的分子工程,(ii)设计新的自组装功能材料,其中可以实现超过微米的传输长度尺度,以及(iii)利用这种长的长度尺度,以在广泛的(生物)电子、光电、能量存储和光催化应用中实现新的器件结构和转换器件性能改进。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pulsed transistor operation enables miniaturization of electrochemical aptamer-based sensors.
  • DOI:
    10.1126/sciadv.add4111
  • 发表时间:
    2022-11-18
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
  • 通讯作者:
Pulsed transistor operation enables miniaturization of electrochemical aptamer-based sensors
脉冲晶体管操作使基于电化学适体的传感器小型化
  • DOI:
    10.17863/cam.91888
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bidinger S
  • 通讯作者:
    Bidinger S
Direct observation of ultrafast singlet exciton fission in three dimensions.
  • DOI:
    10.1038/s41467-022-33647-5
  • 发表时间:
    2022-10-10
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
Organic Photovoltaic Materials for Solar Fuel Applications: A Perfect Match?
  • DOI:
    10.1021/acs.chemmater.3c02286
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Catherine M. Aitchison;Iain McCulloch
  • 通讯作者:
    Catherine M. Aitchison;Iain McCulloch
A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology
  • DOI:
    10.1039/d2ee03483b
  • 发表时间:
    2023-01-06
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Chen, Hu;Jeong, Sang Young;Lin, Yuanbao
  • 通讯作者:
    Lin, Yuanbao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henning Sirringhaus其他文献

光第2次高調波による有機発光トランジスタのキャリア挙動の直接観測
使用光学二次谐波直接观察有机发光晶体管中的载流子行为
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大嶋優記;平子宣明;金英輝;間中孝彰;岩本光正;銀珠林;Henning Sirringhaus
  • 通讯作者:
    Henning Sirringhaus
書評/井上洋著『明治前期の災害対策法令 第一巻』
书评/井上博《明治初期的灾害对策法规第1卷》
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takaharu Tashiro;Saki Matsuura;Akiyo Nomura;Shun Watanabe;Keehoon Kang;Henning Sirringhaus;and Kazuya Ando;天野真志
  • 通讯作者:
    天野真志
Observation of anomalously large Nernst effects in conducting polymers
在导电聚合物中观察到异常大的能斯特效应
  • DOI:
    10.1038/s41467-025-55976-x
  • 发表时间:
    2025-02-07
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yingqiao Ma;Xinglong Ren;Ye Zou;Wenrui Zhao;Dongyang Wang;Zhen Ji;Juncheng Fan;Chaoyi Yan;Lanyi Xiang;Gaoyang Ge;Xiaojuan Dai;Fengjiao Zhang;Ting Lei;Henning Sirringhaus;Chong-an Di;Daoben Zhu
  • 通讯作者:
    Daoben Zhu
大気汚染物質に関する環境法ならびに各国の規制状況
各国有关空气污染物的环境法律法规
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takaharu Tashiro;Saki Matsuura;Akiyo Nomura;Shun Watanabe;Keehoon Kang;Henning Sirringhaus;and Kazuya Ando;天野真志;柳憲一郎,中村健太郎
  • 通讯作者:
    柳憲一郎,中村健太郎
Defect-tolerant electron and defect-sensitive phonon transport in quasi-2D conjugated coordination polymers
准二维共轭配位聚合物中容错电子和缺陷敏感声子输运
  • DOI:
    10.1038/s41467-025-61920-w
  • 发表时间:
    2025-07-18
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hio-Ieng Un;Kamil Iwanowski;Jordi Ferrer Orri;Ian E. Jacobs;Naoya Fukui;David Cornil;David Beljonne;Michele Simoncelli;Hiroshi Nishihara;Henning Sirringhaus
  • 通讯作者:
    Henning Sirringhaus

Henning Sirringhaus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henning Sirringhaus', 18)}}的其他基金

Princeton-Oxford-Cambridge Centre-to-Centre Collaboration on Soft Functional Energy Materials
普林斯顿-牛津-剑桥软功能能源材料中心间合作
  • 批准号:
    EP/Z531303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
Chemistry and physics of conjugated coordination nanosheets and two-dimensional conjugated polymers
共轭配位纳米片和二维共轭聚合物的化学和物理
  • 批准号:
    EP/S030662/1
  • 财政年份:
    2019
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
Additive-Stabilized Polymer Electronics Manufacturing (ASPEM)
添加剂稳定聚合物电子制造 (ASPEM)
  • 批准号:
    EP/R031894/1
  • 财政年份:
    2018
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
Flexible Logic for Autonomous Gas Sensing (FLAGS)
自主气体传感 (FLAGS) 的灵活逻辑
  • 批准号:
    EP/L50516X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
Entangling dopant nuclear spins using double quantum dots
使用双量子点纠缠掺杂剂核自旋
  • 批准号:
    EP/K027018/1
  • 财政年份:
    2013
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
G8-2012 Ink-jet printed single-crystal organic photovoltaics (IPSOP)
G8-2012 喷墨印刷单晶有机光伏电池(IPSOP)
  • 批准号:
    EP/K025651/1
  • 财政年份:
    2013
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
Polymer colour matching devices (POCOMAT)
聚合物配色装置(POCOMAT)
  • 批准号:
    EP/J013617/1
  • 财政年份:
    2012
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
Interfacial domain structure of polycrystalline semiconducting polymer films
多晶半导体聚合物薄膜的界面域结构
  • 批准号:
    EP/G068356/1
  • 财政年份:
    2009
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
Electronic properties of polymers and organic crystals (EPPOC)
聚合物和有机晶体的电子特性(EPPOC)
  • 批准号:
    EP/G051399/1
  • 财政年份:
    2009
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant
High-resolution orthogonal patterning of organics
有机物的高分辨率正交图案
  • 批准号:
    EP/G065586/1
  • 财政年份:
    2009
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Research Grant

相似海外基金

Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
  • 批准号:
    10730981
  • 财政年份:
    2023
  • 资助金额:
    $ 872.38万
  • 项目类别:
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
  • 批准号:
    10735930
  • 财政年份:
    2023
  • 资助金额:
    $ 872.38万
  • 项目类别:
ACTIVITY-DRIVEN PLASTICITY OF THE HAIR CELL CYTOSKELETON
活动驱动的毛细胞细胞骨架的可塑性
  • 批准号:
    10748106
  • 财政年份:
    2023
  • 资助金额:
    $ 872.38万
  • 项目类别:
Optimum design of variable vortex-induced vibration electric power generator with self-tunable vibration property
具有自调谐振动特性的变涡激振动发电机优化设计
  • 批准号:
    23K03639
  • 财政年份:
    2023
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of crystal actuators based on photothermal-induced natural vibration
基于光热诱导自然振动的晶体致动器的开发
  • 批准号:
    22KJ2958
  • 财政年份:
    2023
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Flow-induced vibration and instabilities of structures
流动引起的振动和结构的不稳定性
  • 批准号:
    RGPIN-2018-06465
  • 财政年份:
    2022
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Discovery Grants Program - Individual
FLUIDELELASTIC INSTABILITY, VORTEX-INDUCED VIBRATION AND SYMMETRY BREAKING IN HELICAL ARRAYS OF CYLINDERS SUBJECTED TO CROSS-FLOW
横流圆柱螺旋阵列中的流体弹性不稳定性、涡激振动和对称性破缺
  • 批准号:
    RGPIN-2020-06955
  • 财政年份:
    2022
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Discovery Grants Program - Individual
Effects of inflow perturbations on the energy transfer and wake vortex dynamics of a 2-DOF cylinder undergoing vortex-induced vibration near a plane boundary in turbulent flows
流入扰动对在湍流中平面边界附近经历涡激振动的 2 自由度圆柱体的能量传递和尾涡动力学的影响
  • 批准号:
    569540-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 872.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Long-wavelength 1.7-micron optical coherence tomography for otologic imaging and hearing research
用于耳科成像和听力研究的长波长 1.7 微米光学相干断层扫描
  • 批准号:
    10664863
  • 财政年份:
    2022
  • 资助金额:
    $ 872.38万
  • 项目类别:
A Pilot Study to Evaluate the Benefits of Phytocannabinoids for the Treatment of Chronic Chemotherapy-Induced Peripheral Neuropathy
评估植物大麻素治疗慢性化疗引起的周围神经病变益处的初步研究
  • 批准号:
    10512235
  • 财政年份:
    2022
  • 资助金额:
    $ 872.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了