Topological Insulator based Transistors for Neuromorphic Computer Systems

用于神经形态计算机系统的基于拓扑绝缘体的晶体管

基本信息

  • 批准号:
    EP/X016846/1
  • 负责人:
  • 金额:
    $ 25.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

As dimensional scaling of CMOS is approaching fundamental limits, new information processing devices and micro-architectures are required to extend the capability of present-day Von-Neumann based computers. Application pulls for the new information age such as big data, Internet of Things (IoT), autonomous systems, exascale computing require artificial intelligence (AI) chips that can operate on super ultra-low power to ultimately match and exceed the efficiency of the human brain. A leading candidate for such low power computing architecture is the spiking neural network (SNN), which is one type of event-based learning without any external memory that consumes very little energy. However, the hardware component that emulates the decision-making process of a SNN - a neuron, consumes high power and therefore presently limits the performance of AI. This project brings together expertise from University of Glasgow and Sheffield to explore ternary Topological Insulator (Bi2Te2Se) as a low voltage material platform for a leaky integrate and fire neuron. By controlling the device surface states, the conductance of the channel will be tuned, sufficient enough to transmit a current spike from the drain to the source terminals. A successful demonstration of this concept will result in a milestone leap in hardware implementations of Artificial Neural Networks. The work is exciting and adventurous because there are only two reported TTI-FETs in the literature so far (from 2011and 2012 respectively), and neither of them is being envisaged to be operated as we plan in this work. Beyond the stated goals, new knowledge will be generated of interest to materials science, spintronics and quantum computing communities, where the knowledge gained from this project offers the potential to address existing bottlenecks in these research fields.
随着CMOS的尺寸缩放接近基本极限,需要新的信息处理设备和微架构来扩展当今基于冯诺依曼的计算机的能力。大数据、物联网(IoT)、自主系统、亿级计算等新信息时代的应用需求需要能够以超低功耗运行的人工智能(AI)芯片,以最终达到并超过人脑的效率。这种低功耗计算架构的主要候选者是尖峰神经网络(SNN),这是一种基于事件的学习,没有任何外部存储器,消耗很少的能量。然而,模拟SNN -神经元决策过程的硬件组件消耗高功率,因此目前限制了AI的性能。该项目汇集了来自格拉斯哥大学和谢菲尔德大学的专业知识,以探索三元拓扑绝缘体(Bi 2 Te 2Se)作为泄漏集成和激发神经元的低电压材料平台。通过控制器件表面状态,沟道的电导将被调谐,足以将电流尖峰从漏极传输到源极端子。这一概念的成功演示将导致人工神经网络硬件实现的里程碑式飞跃。这项工作是令人兴奋和冒险的,因为到目前为止,文献中只有两个TTI-FET(分别来自2011年和2012年),并且它们都没有被设想为按照我们在这项工作中的计划进行操作。除了既定目标之外,还将产生材料科学,自旋电子学和量子计算社区感兴趣的新知识,从该项目中获得的知识有可能解决这些研究领域的现有瓶颈。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low Switching Power Neuromorphic Perovskite Devices with Quick Relearning Functionality
  • DOI:
    10.1002/aelm.202300285
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    D. S. Assi;M. Haris;V. Karthikeyan;S. Kazim;Shahzad Ahmad;Vellaisamy A. L. Roy
  • 通讯作者:
    D. S. Assi;M. Haris;V. Karthikeyan;S. Kazim;Shahzad Ahmad;Vellaisamy A. L. Roy
Charge-Mediated Copper-Iodide-Based Artificial Synaptic Device with Ultrahigh Neuromorphic Efficacy
  • DOI:
    10.1002/pssr.202300191
  • 发表时间:
    2023-08-10
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Assi,Dani S. S.;Huang,Hongli;Roy,Vellaisamy A. L.
  • 通讯作者:
    Roy,Vellaisamy A. L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria De Souza其他文献

Maria De Souza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria De Souza', 18)}}的其他基金

ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications'
ECCS-EPSRC - 用于毫米波未来一代无线通信的先进 III-N 器件和电路架构
  • 批准号:
    EP/X01214X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
Device Electronics Based on nanoWires and NanoTubes
基于纳米线和纳米管的设备电子学
  • 批准号:
    EP/D064465/1
  • 财政年份:
    2007
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
Device Electronics Based on nanoWires and NanoTubes
基于纳米线和纳米管的设备电子学
  • 批准号:
    EP/D064465/2
  • 财政年份:
    2007
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant

相似海外基金

Gate insulator deposition process for GaN-based MOS devices using mist-CVD technique
使用雾气 CVD 技术的 GaN 基 MOS 器件的栅极绝缘体沉积工艺
  • 批准号:
    23K03973
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Ferrimagnetic Insulator Based Bilayers for Interface-Driven Topological Spin Textures
合作研究:基于亚铁磁绝缘体的双层界面驱动拓扑自旋纹理
  • 批准号:
    2225645
  • 财政年份:
    2022
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Standard Grant
Graphene-based high temperature two-dimensional topological insulator for realizing Majorana fermions
用于实现马约拉纳费米子的石墨烯基高温二维拓扑绝缘体
  • 批准号:
    22K13989
  • 财政年份:
    2022
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Ferrimagnetic Insulator Based Bilayers for Interface-Driven Topological Spin Textures
合作研究:基于亚铁磁绝缘体的双层界面驱动拓扑自旋纹理
  • 批准号:
    2225646
  • 财政年份:
    2022
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Standard Grant
Electro absorption modulators based on SiGe on insulator
基于绝缘体上 SiGe 的电吸收调制器
  • 批准号:
    2625050
  • 财政年份:
    2019
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Studentship
Electro absorption modulators based on SiGe on insulator
基于绝缘体上 SiGe 的电吸收调制器
  • 批准号:
    2617872
  • 财政年份:
    2019
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Studentship
Using an Insulator-Metal Transition to Overcome the Fundamental Limits of Non-Volatile Memory Based on Ferroelectric Field Effect Transistors
利用绝缘体-金属转变克服基于铁电场效应晶体管的非易失性存储器的基本限制
  • 批准号:
    1914730
  • 财政年份:
    2019
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Standard Grant
Scalable High Performance 1D Metal-Insulator-Graphene Diodes for High Frequency Applications Based on 2D Materials from Chemical Vapor Deposition
基于化学气相沉积二维材料的可扩展高性能一维金属绝缘体石墨烯二极管,用于高频应用
  • 批准号:
    391996624
  • 财政年份:
    2018
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grants
Silicon-on-Insulator based Integrated Optical Frequency Combs for Microwave, THz and Optics
用于微波、太赫兹和光学的基于绝缘体上硅的集成光学频率梳
  • 批准号:
    322402243
  • 财政年份:
    2017
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grants
Fundamental Study of Nonlinear Electrokinetic Phenomena in Insulator-based Dielectrophoretic Microdevices
绝缘体介电泳微器件中非线性动电现象的基础研究
  • 批准号:
    1704379
  • 财政年份:
    2017
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了