A Long-term VIS-enabled Infrastructure for Supporting ML-assisted Human Decision-making

支持 ML 辅助人类决策的长期 VIS 基础设施

基本信息

  • 批准号:
    EP/X029557/1
  • 负责人:
  • 金额:
    $ 74.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Many large organisations maintains a large pool of trained human resources. When a new task arrives, the management constructs a team by selecting appropriate team members with different skills and arranges an effective operational structure for the team. In machine learning (ML), the model developers typically train many models for each individual task, then select the best model to perform the task, while discarding the unselected models. Considering that keeping a trained ML model costs much less than employing a person, there is a huge waste of model resources. The main reasons behind this wasteful practice include (i) the lack of effective means for apprehending the "skill profiles" a large number of ML models; (ii) the lack of effective means for constructing a "team" such that the combined skillset of the team is suitable for the task but each component model does not have all the skills required; and (iii) the lack of effective means for enabling human decision makers to utilise imperfect ML models as assistants or advisers. Because of these reasons, there is less incentive to maintain a large pool of trained ML models that may not be the best for a specific task individually, and the emphasis has been placed on training a "star" model as optimal as possible for each arrival task.The technology of visualization and visual analytics (VIS) can address the aforementioned three "lacks". In many data-intensive applications, VIS can enable decision-makers to observe a large amount of data quickly (e.g., stock market), analyse complex relationships among different data entities (e.g., social network analysis), and make complex judgement based on multiple and sometimes conflicting machine-predictions (e.g., by different epidemiological models). The latest theoretical advance offers an explanation as to what visualization offers users that statistics and algorithms cannot offer. Humans have limited cognitive bandwidth for receiving and reasoning about information. To reduce the amount of information received by humans, statistics and algorithms typically transform a large amount of data to a few variables (e.g., mean and standard deviation) at a higher precision, while visualization presents many more variables at a lower precision (e.g., a line plot of 500 data points in a time series). Because humans can perceive many variables visually at a very low cognitive cost, more cognitive bandwidth can be directed to data-informed reasoning. This explains why financial experts make decisions rarely based only on one or two financial indicators, but also need to observe time series data. Visual analytics is a branch of VIS focusing on combined uses of statistics, algorithms, visualization, and interaction in human decision workflows.In this project, we will develop a new technology to enable human decision makers to benefit from VIS capabilities in their workflows. We address the first aforementioned "lack" by designing and developing a novel VIS-enabled infrastructure where hundreds and thousands of ML models can be stored with their provenance, be tested and profiled automatically and routinely, and be managed as trained model resources by ML model-developers with the aid of VIS capabilities. We address the second "lack" by providing ML model-developers with a VIS-enabled tool for constructing ensemble models (i.e., teams of ML models) by selecting appropriate component models (i.e., team members) from a pool of model resources, and determine an appropriate ensemble strategy (i.e., team structure). Last but not least, we address the third "lack" by providing ML model users (i.e., decision makers who receive low-level predictions or recommendations from ML models) with the VIS capabilities, which allow them to observe quickly the anomalies and conflicts in the low-level predictions made by different models, and when it is helpful, to scrutinise the profile and provenance of these models.
许多大型组织拥有大量训练有素的人力资源。当新任务到来时,管理层通过选择具有不同技能的合适团队成员来构建团队,并为团队安排有效的运营结构。在机器学习(ML)中,模型开发人员通常会为每个任务训练许多模型,然后选择最佳模型来执行任务,同时丢弃重复的模型。考虑到保持一个经过训练的ML模型的成本比雇用一个人要低得多,这是一个巨大的模型资源浪费。这种浪费的做法背后的主要原因包括:(i)缺乏有效的手段来理解大量ML模型的“技能配置文件”;(ii)缺乏有效的手段来构建一个“团队”,使得团队的组合技能适合任务,但每个组件模型并不具备所需的所有技能;(iii)缺乏有效的手段,使人类决策者能够利用不完美的ML模型作为助手或顾问。由于这些原因,没有太多的动机去维护一个大的训练ML模型池,这些模型可能不是最适合单个特定任务的,重点是训练一个“星星”模型,使其尽可能适合每个到达的任务。可视化和可视化分析技术(维斯)可以解决上述三个“缺乏”。在许多数据密集型应用中,维斯可使决策者快速观察大量数据(例如,股票市场),分析不同数据实体之间的复杂关系(例如,社交网络分析),并基于多个且有时相互冲突的机器预测(例如,不同的流行病学模型)。最新的理论进展解释了可视化为用户提供了统计和算法无法提供的东西。人类接受和推理信息的认知带宽有限。为了减少人类接收的信息量,统计和算法通常将大量数据转换为几个变量(例如,平均值和标准偏差),而可视化以较低的精度呈现更多的变量(例如,时间序列中500个数据点的线图)。由于人类可以以非常低的认知成本视觉地感知许多变量,因此可以将更多的认知带宽用于基于数据的推理。这就解释了为什么财务专家很少只根据一两个财务指标来做决策,还需要观察时间序列数据。可视化分析是维斯的一个分支,专注于在人类决策工作流程中综合使用统计、算法、可视化和交互。在本项目中,我们将开发一种新技术,使人类决策者能够在其工作流程中受益于维斯功能。我们通过设计和开发一个新的VIS支持的基础设施来解决上述第一个“缺乏”问题,在这个基础设施中,成千上万的ML模型可以与它们的出处一起存储,自动和常规地进行测试和分析,并由ML模型开发人员在维斯功能的帮助下作为经过训练的模型资源进行管理。我们通过为ML模型开发人员提供支持VIS的工具来构建集成模型(即,ML模型的团队)通过选择适当的组件模型(即,团队成员),并确定适当的整体策略(即,团队结构)。最后但并非最不重要的是,我们通过提供ML模型用户(即,从ML模型接收低级预测或建议的决策者)与维斯功能,这使他们能够快速观察不同模型所做的低级预测中的异常和冲突,并在有帮助时仔细检查这些模型的配置文件和出处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Chen其他文献

Graphene oxide-assisted surface plasmon coupled emission for amplified fluorescence immunoassay
氧化石墨烯辅助表面等离子体耦合发射用于放大荧光免疫分析
  • DOI:
    10.1016/j.snb.2017.06.099
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai-Xin Xie;Shuo-Hui Cao;Zheng-Chuang Wang;Yu-Hua Weng;Si-Xin Huo;Yan-Yun Zhai;Min Chen;Xiao-Hui Pan;Yao-Qun Li
  • 通讯作者:
    Yao-Qun Li
没有相邻短圈的可平面图的带有分离的选择性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Chen;Ko-Wei Lih;Weifan Wang
  • 通讯作者:
    Weifan Wang
Zinc(II) complexes with 5,6-dihydro-1,4-dithiin-2,3-dicarboxylicanhydrate and different N-donors: syntheses, crystal structures, and emission properties
锌(II)与5,6-二氢-1,4-二硫英-2,3-二羧酸酐和不同N-供体的配合物:合成、晶体结构和发射特性
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Shao-Ming Fang;Donglai Peng;Min Chen;Liran Jia;Min Hu
  • 通讯作者:
    Min Hu
Newly Isolated Chl d-Containing Cyanobacteria
新分离的含叶绿素蓝藻
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaqiong Li;A. Larkum;Martin Schliep;M. Kühl;B. Neilan;Min Chen
  • 通讯作者:
    Min Chen
Public environmental facilities: Hygiene factors for tourists' environmental behaviour
公共环境设施:游客环境行为卫生因素
  • DOI:
    10.1016/j.envsci.2020.01.009
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Chang Wang;Jinhe Zhang;Jinkun Sun;Min Chen;Jinhua Yang
  • 通讯作者:
    Jinhua Yang

Min Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Chen', 18)}}的其他基金

Collaborative Research: Prosodic Analysis and Visualization of Phonetic Samples for Improved Understanding of Stress and Intonation
合作研究:语音样本的韵律分析和可视化,以提高对重音和语调的理解
  • 批准号:
    2109654
  • 财政年份:
    2021
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
RAMP VIS: Making Visual Analytics an Integral Part of the Technological Infrastructure for Combating COVID-19
RAMP VIS:使可视化分析成为抗击 COVID-19 技术基础设施的组成部分
  • 批准号:
    EP/V054236/1
  • 财政年份:
    2021
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Research Grant
NSF Student Travel Support for 2020 ACM Special Interest Group of Management of Data (ACM SIGMOD)
NSF 学生旅行支持 2020 年 ACM 数据管理特别兴趣小组 (ACM SIGMOD)
  • 批准号:
    2005422
  • 财政年份:
    2020
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
Adjoint tomography of the crustal and upper-mantle seismic structure beneath Continental China
中国大陆地壳和上地幔地震结构的伴随层析成像
  • 批准号:
    1345096
  • 财政年份:
    2014
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
CAREER: Revealing the Mechanism of Non-endocytotic CPP-modulated Protein Delivery
职业:揭示非内吞 CPP 调节的蛋白质递送机制
  • 批准号:
    1253565
  • 财政年份:
    2013
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Continuing Grant
Integrated Visualization of Multiple Data Streams for Command Control Interfaces (CCI)
命令控制接口 (CCI) 的多个数据流的集成可视化
  • 批准号:
    EP/J020435/1
  • 财政年份:
    2012
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Research Grant
Illuminating the Path of Video Visualization
照亮视频可视化之路
  • 批准号:
    EP/G006555/2
  • 财政年份:
    2011
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Research Grant
STTR Phase I: Cost Effective Core-Shell Nanocatalysts for PEM Fuel Cells
STTR 第一阶段:用于质子交换膜燃料电池的具有成本效益的核壳纳米催化剂
  • 批准号:
    1010099
  • 财政年份:
    2010
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
Illuminating the Path of Video Visualization
照亮视频可视化之路
  • 批准号:
    EP/G006555/1
  • 财政年份:
    2009
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Research Grant
Autonomic Data Management for Very Large Dataset Visualization
适用于超大型数据集可视化的自主数据管理
  • 批准号:
    EP/D059674/1
  • 财政年份:
    2006
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Research Grant

相似国自然基金

区域碳交易试点的运行机制及其经济影响研究---基于Term-Co2模型
  • 批准号:
    71473242
  • 批准年份:
    2014
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
长期间歇性缺氧抑制呼吸运动神经长时程易化的分子机制
  • 批准号:
    81141002
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
激活γ-分泌酶促进海马长时程增强形成的机制
  • 批准号:
    30500149
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Long-Term Nature Reserve Human Interaction
长期自然保护区人类互动
  • 批准号:
    2345184
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Continuing Grant
EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet
EAGER:ANT LIA:生存或灭亡:南极西部冰盖微生物生存和长期存在的记录
  • 批准号:
    2427241
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
LTREB: Collaborative Research: Long-term changes in peatland C fluxes and the interactive role of altered hydrology, vegetation, and redox supply in a changing climate
LTREB:合作研究:泥炭地碳通量的长期变化以及气候变化中水文、植被和氧化还原供应变化的相互作用
  • 批准号:
    2411998
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Human long term adaptation to prehistoric ENSO-driven flooding
博士论文研究:人类对史前 ENSO 驱动洪水的长期适应
  • 批准号:
    2347965
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Long Term Environmental Effects of Metallurgy
博士论文研究:冶金的长期环境影响
  • 批准号:
    2420185
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Standard Grant
Improving long term forecasts of tree growth in carbon farming projects
改善碳农业项目中树木生长的长期预测
  • 批准号:
    LP230100049
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Linkage Projects
Defining pathways that control T cell lifespan for long-term immunity
定义控制 T 细胞寿命的途径以实现长期免疫
  • 批准号:
    DP240102812
  • 财政年份:
    2024
  • 资助金额:
    $ 74.45万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了