Leveraging the impact of diversity in neurodevelopmental disability by integrating machine learning in personalized interventions.
通过将机器学习整合到个性化干预中,利用多样性对神经发育障碍的影响。
基本信息
- 批准号:ES/T013435/1
- 负责人:
- 金额:$ 48.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Neurodevelopmental disability (NDD), which is an umbrella term for autism, attention deficit, and intellectual and learning disability, affects 13% of the population. It has major economic and quality-of-life impacts on NDD individuals and families, and substantial economic burden on the healthcare system. So far, treatment is aimed only at general symptoms, which often leads to low efficacy and frequent side effects. The advent of novel genetic testing methods has provided plenty of evidence of the major impact that genes and their regulation have on clinical presentation in NDD. Nonetheless, there is a large diversity among individuals with NDD, even with the same genetic mutation. This is not unique to NDD as it is seen widely in many other medical conditions. The complexity derived from the genetic heterogeneity and the clinical (neuro) diversity has proven challenging to traditional approaches for treatment. Recent research in the UK and Canada has led to the development of large databases recording detailed information about individuals with NDD. Artificial intelligence (AI) now provides us with the tools to quickly analyze the information in those datasets. In particular, we will use machine learning (ML) to manage complex information, leading to the acceleration and better prioritization of interventions. Also, our project takes a novel view on the understanding of genomic information in NDD. Instead of directing our focus only on exploring data from a single individual or small group of individuals carrying the same gene mutation, our team will apply ML to large databases to identify features (from genes and their biology) correlated with improved clinical outcomes. In addition, we will use ML to better understand the interdependence between different symptoms to develop treatments that have a globally positive impact. In other words, we would find solutions that improve cognitive skills without impacting sleep negatively or generating more anxiety, as has been seen in previous clinical trials. We will finish by providing the entire scientific community with an open access portal, including our research findings, which will be integrated with the current Open Targets platform, a partnership between academia and industry in the UK that allows researchers to access linked data on diseases, genes and drugs in a single site. Researchers will be able to provide further information, which will improve the ML model. To ensure that we accomplish our objectives, we have assembled a team of experts in clinical and genetics of NDD: Dr. Bolduc (Canada); in computer science of genomics, molecular and pharmacological data: Dr. Dunham (UK); bioinformatics: Dr. Droit; machine learning: Dr. Greiner; social sciences, patient engagement and health economic: Dr. Zwicker. Our team has also developed strong links with NDD patient and research organizations in Canada and the UK, which will provide insight throughout the project. We are supported by collaborators involved in family and government engagement, ethics and data management in the UK and Canada. The project will also be a unique opportunity for multidisciplinary international training. Our project will show how ML can disassemble the complexity and diversity seen in NDD to develop more successful interventions. It will allow us to develop new ML approaches that will be readily applicable to other disorders where personalized interventions have been lagging behind diagnosis. More importantly, it will bring together families, society and scientists into a shared space where more and better information is exchanged. Finally, our project will embrace responsible implementation of data privacy and confidentiality while recognizing the need for data sharing to develop better interventions.
神经发育障碍(NDD)是自闭症、注意力缺陷、智力和学习障碍的总称,影响着13%的人口。它对NDD个人和家庭的经济和生活质量产生重大影响,并对医疗保健系统造成重大经济负担。到目前为止,治疗仅针对一般症状,这往往导致疗效低下和副作用频繁。 新的基因检测方法的出现提供了大量的证据表明基因及其调控对NDD临床表现的重大影响。尽管如此,NDD个体之间存在很大的多样性,即使具有相同的基因突变。这不是NDD独有的,因为它在许多其他医疗条件中广泛存在。来自遗传异质性和临床(神经)多样性的复杂性已被证明具有挑战性的传统治疗方法。 最近在英国和加拿大的研究导致了大型数据库的发展,记录了NDD患者的详细信息。人工智能(AI)现在为我们提供了快速分析这些数据集中信息的工具。特别是,我们将使用机器学习(ML)来管理复杂的信息,从而加速干预并更好地优先考虑干预措施。此外,我们的项目采取了一个新的观点对基因组信息的理解在NDD。我们的团队将把重点放在探索来自携带相同基因突变的单个个体或一小群个体的数据上,而不是将ML应用于大型数据库,以识别与改善临床结果相关的特征(来自基因及其生物学)。 此外,我们将使用ML更好地了解不同症状之间的相互依赖性,以开发具有全球积极影响的治疗方法。换句话说,我们将找到改善认知技能的解决方案,而不会对睡眠产生负面影响或产生更多的焦虑,就像在以前的临床试验中看到的那样。 最后,我们将为整个科学界提供一个开放获取的门户网站,包括我们的研究成果,它将与目前的开放目标平台相结合,这是英国学术界和工业界之间的合作伙伴关系,允许研究人员在一个网站上访问有关疾病,基因和药物的相关数据。研究人员将能够提供进一步的信息,这将改善ML模型。 为了确保我们实现我们的目标,我们组建了一个NDD临床和遗传学专家团队:Bolduc博士(加拿大);基因组学,分子和药理学数据的计算机科学:Dunham博士(英国);生物信息学:Droit博士;机器学习:Greiner博士;社会科学,患者参与和健康经济学:Zwicker博士。我们的团队还与加拿大和英国的NDD患者和研究组织建立了密切的联系,这将在整个项目中提供见解。我们得到了英国和加拿大参与家庭和政府参与,道德和数据管理的合作者的支持。该项目也将是多学科国际培训的一个独特机会。 我们的项目将展示ML如何分解NDD中的复杂性和多样性,以开发更成功的干预措施。它将使我们能够开发新的ML方法,这些方法将很容易适用于个性化干预落后于诊断的其他疾病。更重要的是,它将把家庭、社会和科学家聚集到一个共享的空间,在那里交换更多更好的信息。最后,我们的项目将包括负责任地实施数据隐私和保密性,同时认识到需要数据共享以制定更好的干预措施。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing a cluster-based approach for deciphering complexity in individuals with neurodevelopmental differences.
- DOI:10.3389/fped.2023.1171920
- 发表时间:2023
- 期刊:
- 影响因子:2.6
- 作者:Cuppens, Tania;Kaur, Manpreet;Kumar, Ajay A.;Shatto, Julie;Ng, Andy Cheuk-Him;Leclercq, Mickael;Reformat, Marek Z.;Droit, Arnaud;Dunham, Ian;Bolduc, Francois V.
- 通讯作者:Bolduc, Francois V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Dunham其他文献
The ideological stakes of deploying rural broadband in the U.S. state of Georgia
- DOI:
10.1016/j.jup.2022.101409 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Ian Dunham - 通讯作者:
Ian Dunham
Open Targets Genetics: An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci
开放目标遗传学:一种开放方法,可系统地优先考虑所有已发表的人类 GWAS 性状相关位点的因果变异和基因
- DOI:
10.1101/2020.09.16.299271 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Edward Mountjoy;Ellen M. Schmidt;M. Carmona;Gareth Peat;Alfredo Miranda;Luca Fumis;James Hayhurst;A. Buniello;Jeremy Schwartzentruber;M. Karim;Daniel Wright;Andrew Hercules;Eliseo Papa;E. Fauman;J. Barrett;John A. Todd;David Ochoa;Ian Dunham;Maya Ghoussaini - 通讯作者:
Maya Ghoussaini
Applications of machine learning in drug discovery and development
机器学习在药物发现和开发中的应用
- DOI:
10.1038/s41573-019-0024-5 - 发表时间:
2019-04-11 - 期刊:
- 影响因子:101.800
- 作者:
Jessica Vamathevan;Dominic Clark;Paul Czodrowski;Ian Dunham;Edgardo Ferran;George Lee;Bin Li;Anant Madabhushi;Parantu Shah;Michaela Spitzer;Shanrong Zhao - 通讯作者:
Shanrong Zhao
A sequence-based integrated map of chromosome 22.
22 号染色体基于序列的整合图谱。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:7
- 作者:
William J. Tapper;N. E. Morton;Ian Dunham;Xiayi Ke;Andrew Collins - 通讯作者:
Andrew Collins
Identification of multiple HTF‐island associated genes in the human major histocompatibility complex class III region.
人类主要组织相容性复合物 III 类区域中多个 HTF 岛相关基因的鉴定。
- DOI:
- 发表时间:
1989 - 期刊:
- 影响因子:11.4
- 作者:
Carole A. Sargent;Ian Dunham;R. D. Campbell - 通讯作者:
R. D. Campbell
Ian Dunham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于ImPACT方案的家长干预对孤独症谱系障碍儿童干预疗效及神经生物学机制研究
- 批准号:82301732
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西方饮食通过“肠道菌群-Rspo1”轴促进肥胖与肠道吸收的机制研究
- 批准号:82370845
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
2型糖尿病胰岛β细胞功能调控新靶点IMPACT的功能及作用机制研究
- 批准号:81600598
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于IMPACT模型的社区慢性病干预效果的经济学评价研究
- 批准号:71303173
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
ORS Spine Section Symposia: Enhancing Spine Research throughMentoring, Diversity and Collaboration
ORS 脊柱部分研讨会:通过指导、多样性和协作加强脊柱研究
- 批准号:
10606748 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
IAS 2023, the 12th IAS Conference on HIV Science, Brisbane, Australia, and virtually, 23-26 July 2023
IAS 2023,第 12 届 IAS HIV 科学会议,澳大利亚布里斯班,虚拟会议,2023 年 7 月 23-26 日
- 批准号:
10696505 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Maternal Fetal Medicine Units Network: University of California, San Francisco
母胎医学单位网络:加州大学旧金山分校
- 批准号:
10682872 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Prenatal Cigarette Smoke Exposure: Impact on Offspring Gut Bacterial Microbiome
产前香烟烟雾暴露:对后代肠道细菌微生物组的影响
- 批准号:
10747173 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Understanding the impact of climate change and elevated CO2 on tree microbial diversity
了解气候变化和二氧化碳浓度升高对树木微生物多样性的影响
- 批准号:
2874934 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Studentship
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
- 批准号:
10638813 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Determining the Influence of Clinicodemographic, Biologic and SDOH Factors in Racial and Ethnic Disparities in the Prognosis of Alcohol-Associated Liver Disease
确定临床人口统计学、生物和 SDOH 因素对酒精相关性肝病预后中种族和民族差异的影响
- 批准号:
10785492 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别: