Statistical inference with mechanistic models on heterogeneous data: improving the control of infectious diseases
利用异构数据的机制模型进行统计推断:改善传染病的控制
基本信息
- 批准号:MR/J01432X/1
- 负责人:
- 金额:$ 32.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Influenza epidemics occur every year, resulting in large amounts of illness in the community, many early deaths, major disruption to the health services, and significant economic losses. This is despite widespread vaccination. Although the vaccine contains three strains, it is not possible to say ahead of the epidemic which (if any) of the strains will circulate, and how severe will the resultant epidemic be. This means that planning by public health authorities, physicians, and hospitals is difficult, resulting in significant inefficiencies (such as the unnecessary cancelling elective surgeries, etc). The size of an influenza epidemic is governed, amongst other things, by the level of immunity in the population (it is for this reason that pandemics are so feared, as the novel virus tends to be very different from existing strains, and so the level of immunity in the population is low). The emergence of a novel H1N1 (swine flu) virus in 2009 has been closely monitored and studied. The UK has one of the best influenza surveillance systems in the world, and has amassed a great deal of data on the spread, severity, and population immunity to this virus. Despite this, the virus has surprised public health officials and mathematical modellers alike, as a significant epidemic was observed during the winter of 2010/11 despite apparently high levels of population immunity. What may happen in the coming years is equally unknown. The emergence of this virus and the wealth of data available provide an unique opportunity to better understand the dynamics of a new influenza virus following its introduction into the human population. We intend to develop and test a number of different mathematical models to build a better picture of the dynamics and evolution of influenza in the population. The models will be fitted to the range of epidemiological data using state-of-the art statistical techniques, which will have general applicability within the fields of infectious disease dynamics and statistical inference. The statistical framework will shed light on the effective level of protection in the population against subsequent drifted variants, and pave the way for the next generation of predictive tools. These investigation are critical to improve the effectiveness of public health measures, like vaccination, and determine which data should be prioritised to help make predictive models of seasonal and pandemic influenza.This multi-disciplinary project involves many different stakeholders, including the bodies that are collecting the data, experts in disease transmission and host-pathogen interactions, mathematical modellers who formalize biological mechanisms, statisticians who develop rigorous and robust methods to confront models to data, and finally, public health experts who ask the questions that the model must address. It is envisaged that the project will help improve public health policy in this high-profile area, develop new methods for fitting models to data, and provide an ideal training ground for the lead applicant to become an established leader in mathematical epidemiology.
每年都会发生流感大流行,造成社区大量患病、许多人过早死亡、卫生服务严重中断以及重大经济损失。这是在广泛接种疫苗的情况下发生的。尽管该疫苗含有三种毒株,但在疫情爆发前不可能预测哪一种毒株(如果有的话)会传播,以及由此产生的疫情会有多严重。这意味着公共卫生当局、医生和医院很难进行规划,导致效率严重低下(例如不必要地取消选择性手术等)。除其他因素外,流感疫情的规模由人群的免疫水平决定(正因为如此,人们才如此担心大流行,因为新型病毒往往与现有病毒株非常不同,因此人群的免疫水平很低)。2009年出现的新型H1N1(猪流感)病毒一直受到密切监测和研究。英国拥有世界上最好的流感监测系统之一,并积累了大量关于这种病毒的传播、严重程度和人群免疫力的数据。尽管如此,该病毒还是让公共卫生官员和数学建模人员都感到惊讶,因为在2010/11年冬季,尽管人口免疫力明显很高,但仍观察到一场重大的流行病。未来几年可能发生的事情同样是未知的。这种病毒的出现和现有的丰富数据为更好地了解一种新型流感病毒进入人群后的动态提供了独特的机会。我们打算开发和测试一些不同的数学模型,以更好地了解流感在人群中的动态和进化。这些模型将使用最先进的统计技术来拟合流行病学数据的范围,这些统计技术将在传染病动力学和统计推断领域具有普遍适用性。该统计框架将阐明人口对随后漂移变异的有效保护水平,并为下一代预测工具铺平道路。这些调查对于提高疫苗接种等公共卫生措施的有效性和确定应优先考虑哪些数据以帮助建立季节性流感和大流行性流感的预测模型至关重要。这个多学科项目涉及许多不同的利益攸关方,包括收集数据的机构、疾病传播和宿主-病原体相互作用方面的专家、形式化生物机制的数学建模者、开发严格而有力的方法使模型面对数据的统计学家,以及最后提出模型必须解决的问题的公共卫生专家。预计该项目将有助于改善这一引人注目领域的公共卫生政策,开发使模型与数据相适应的新方法,并为主要申请人成为数学流行病学领域的公认领导者提供理想的培训场所。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Health scores in Flusurvey participants: findings from the 2012-13 influenza season
Flusurvey 参与者的健康评分:2012-13 流感季节的调查结果
- DOI:10.1016/s0140-6736(13)62447-2
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Adler A
- 通讯作者:Adler A
Potential for large outbreaks of Ebola virus disease.
- DOI:10.1016/j.epidem.2014.09.003
- 发表时间:2014-12
- 期刊:
- 影响因子:3.8
- 作者:Camacho, A.;Kucharski, A. J.;Funk, S.;Breman, J.;Piot, P.;Edmunds, W. J.
- 通讯作者:Edmunds, W. J.
Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus
登革热和寨卡疫情的比较分析揭示了不同环境和病毒的差异
- DOI:10.1101/043265
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Funk S
- 通讯作者:Funk S
Extending the elderly- and risk-group programme of vaccination against seasonal influenza in England and Wales: a cost-effectiveness study.
- DOI:10.1186/s12916-015-0452-y
- 发表时间:2015-10-13
- 期刊:
- 影响因子:9.3
- 作者:Baguelin M;Camacho A;Flasche S;Edmunds WJ
- 通讯作者:Edmunds WJ
Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study.
- DOI:10.1371/journal.pmed.1001527
- 发表时间:2013-10
- 期刊:
- 影响因子:15.8
- 作者:Baguelin M;Flasche S;Camacho A;Demiris N;Miller E;Edmunds WJ
- 通讯作者:Edmunds WJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anton Camacho其他文献
Effectiveness of rVSV-ZEBOV vaccination during the 2018–20 Ebola virus disease epidemic in the Democratic Republic of the Congo: a retrospective test-negative study
在刚果民主共和国 2018-2020 年埃博拉病毒病流行期间 rVSV-ZEBOV 疫苗接种的有效性:一项回顾性阴性检测研究
- DOI:
10.1016/s1473-3099(24)00419-5 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:31.000
- 作者:
Sophie Meakin;Justus Nsio;Anton Camacho;Richard Kitenge;Rebecca M Coulborn;Etienne Gignoux;John Johnson;Esther Sterk;Elisabeth Mukamba Musenga;Stephane Hans Bateyi Mustafa;Epicentre-MSF EVD Working Group;Flavio Finger;Steve Ahuka-Mundeke - 通讯作者:
Steve Ahuka-Mundeke
Importance of investing time and money in integrating large language model-based agents into outbreak analytics pipelines.
投入时间和金钱将基于大型语言模型的代理集成到疫情分析管道中的重要性。
- DOI:
10.1016/s2666-5247(24)00104-6 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. V. van Hoek;Sebastian Funk;S. Flasche;B. Quilty;E. van Kleef;Anton Camacho;A. Kucharski - 通讯作者:
A. Kucharski
Evaluation of a decentralised model of care on case isolation and patient outcomes during the 2018–20 Ebola outbreak in the Democratic Republic of the Congo: a retrospective observational study
刚果民主共和国 2018-2020 年埃博拉疫情期间分散护理模式对病例隔离和患者结局的评估:一项回顾性观察研究
- DOI:
10.1016/s2214-109x(25)00011-7 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:18.000
- 作者:
Patrick M Barks;Anton Camacho;Trish Newport;Filipe Ribeiro;Steve Ahuka-Mundeke;Richard Kitenge;Justus Nsio;Rebecca M Coulborn;Emmanuel Grellety - 通讯作者:
Emmanuel Grellety
Anton Camacho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Concise descriptors of genomic data facilitate mechanistic inference
职业:基因组数据的简明描述符有助于机械推理
- 批准号:
2238125 - 财政年份:2023
- 资助金额:
$ 32.02万 - 项目类别:
Continuing Grant
Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs
使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具
- 批准号:
10761637 - 财政年份:2023
- 资助金额:
$ 32.02万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10709474 - 财政年份:2021
- 资助金额:
$ 32.02万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10334519 - 财政年份:2021
- 资助金额:
$ 32.02万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10539401 - 财政年份:2021
- 资助金额:
$ 32.02万 - 项目类别:
CRCNS: Mechanistic Modeling and Inference of Neuronal Synaptic Transmission
CRCNS:神经元突触传递的机制建模和推断
- 批准号:
10426127 - 财政年份:2020
- 资助金额:
$ 32.02万 - 项目类别:
CRCNS: Mechanistic Modeling and Inference of Neuronal Synaptic Transmission
CRCNS:神经元突触传递的机制建模和推断
- 批准号:
10206091 - 财政年份:2020
- 资助金额:
$ 32.02万 - 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
- 批准号:
10651874 - 财政年份:2019
- 资助金额:
$ 32.02万 - 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
- 批准号:
10179312 - 财政年份:2019
- 资助金额:
$ 32.02万 - 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
- 批准号:
10488636 - 财政年份:2019
- 资助金额:
$ 32.02万 - 项目类别:














{{item.name}}会员




