Evolution forecasting for real-time blood-cancer risk prediction

实时血癌风险预测的进化预测

基本信息

  • 批准号:
    MR/S031782/1
  • 负责人:
  • 金额:
    $ 151.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Cancer is a disease of evolution that plays out in our bodies over decades. As our cells divide, occasional errors ("mutations") in DNA replication occur which can disrupt the normal function of the cell. If these "mutant clones" survive long enough they can acquire further cancer-causing mutations that eventually drive the total break-down of controlled cell proliferation. The first steps of this evolutionary process begin years before the development of cancer. This raises the possibility that these early events could be used as a bellwether for predicting who is at risk of cancer. However, because it is difficult to measure the evolution taking place inside our bodies over such long timescales, our understanding of the evolutionary dynamics driving early cancer remains cursory. A key gap in our understanding is our inability to identify which mutant clones will progress to lethal cancers and which will remain benign. Serial blood samples collected annually from hundreds of thousands of healthy people give us a superpower that can fill in these gaps in understanding. We can "zoom in" on the people who develop cancer, then "rewind" time by analysing blood samples collected years before the cancer was diagnosed. This provides a detailed "fossil record" of the disease, enabling one to determine when the cancer first arose and to watch the entire evolutionary life-history of the tumour unfold, one DNA error at a time. An attractive initial target for this ambitious vision is the aggressive blood cancer Acute Myeloid Leukemia (AML) because it is characterised by a relatively small number of cancer-causing mutations, which are readily detectable in the blood. This UKRI FLF application sets out an innovative long-term research programme for blood cancer prediction and early detection. To achieve this, first we will combine population genetic theory with the vast amounts of sequencing data from the blood of >50,000 individuals to characterise the evolutionary dynamics that defines "normal". Second, by exploiting an extraordinary set of serial blood samples in hundreds of AML cases and cancer-free controls we will generate a unique dynamic dataset that paints a highly quantitative genetic portrait of how AML evolves from healthy tissue. Third, by mining this rich data resource, we will train a set of mathematical and statistical models that use evolutionary dynamics theory and simulation (which we have previously pioneered) to make probabilistic "forecasts" of leukemia risk from a blood sample. This FLF application will thus establish blood-cancers as a "model system" for early cancer detection by combining unique longitudinal samples, novel sequencing technologies and emerging statistical methods to predict blood cancer risk.
癌症是一种进化的疾病,在我们的身体里发生了几十年。当我们的细胞分裂时,DNA复制中偶尔发生的错误(“突变”)会破坏细胞的正常功能。如果这些“突变克隆”存活的时间足够长,它们就会获得进一步的致癌突变,最终导致受控细胞增殖的完全崩溃。这一进化过程的第一步在癌症发展前几年就开始了。这就提出了一种可能性,即这些早期事件可以作为预测谁有患癌症风险的风向标。然而,由于很难在如此长的时间尺度上测量我们体内发生的进化,我们对导致早期癌症的进化动力学的理解仍然是粗略的。我们认识上的一个关键差距是,我们无法确定哪些突变克隆会发展成致命的癌症,哪些会保持良性。每年从成千上万的健康人身上收集的连续血液样本给了我们一个超能力,可以填补这些理解上的空白。我们可以“放大”癌症患者,然后通过分析癌症确诊前几年采集的血液样本来“倒带”时间。这提供了一个详细的疾病“化石记录”,使人们能够确定癌症首次出现的时间,并观察肿瘤的整个进化生活史,一次一个DNA错误。这一雄心勃勃的愿景的一个有吸引力的初始目标是侵袭性血癌急性髓性白血病(AML),因为它的特点是相对较少的致癌突变,这些突变很容易在血液中检测到。这项UKRI FLF应用程序为血癌预测和早期检测制定了一项创新的长期研究计划。为了实现这一目标,首先,我们将把群体遗传学理论与来自50万个人血液的大量测序数据结合起来,以描述定义“正常”的进化动态。其次,通过利用数百例AML病例和无癌对照的一组非凡的系列血液样本,我们将生成一个独特的动态数据集,描绘出AML如何从健康组织进化的高度定量的遗传肖像。第三,通过挖掘这一丰富的数据资源,我们将训练一组数学和统计模型,这些模型使用进化动力学理论和模拟(我们之前率先使用)来从血液样本中对白血病风险进行概率“预测”。通过结合独特的纵向样本、新颖的测序技术和新兴的统计方法来预测血癌风险,该FLF应用程序将建立血癌作为早期癌症检测的“模型系统”。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mutation rates and fitness consequences of mosaic chromosomal alterations in blood
血液中镶嵌染色体改变的突变率和适应性后果
  • DOI:
    10.1101/2022.05.07.491016
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Watson C
  • 通讯作者:
    Watson C
Systematic Profiling of DNMT3A Variants Reveals Protein Instability Mediated by the DCAF8 E3 Ubiquitin Ligase Adaptor.
  • DOI:
    10.1158/2159-8290.cd-21-0560
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    28.2
  • 作者:
    Huang YH;Chen CW;Sundaramurthy V;Słabicki M;Hao D;Watson CJ;Tovy A;Reyes JM;Dakhova O;Crovetti BR;Galonska C;Lee M;Brunetti L;Zhou Y;Tatton-Brown K;Huang Y;Cheng X;Meissner A;Valk PJM;Van Maldergem L;Sanders MA;Blundell JR;Li W;Ebert BL;Goodell MA
  • 通讯作者:
    Goodell MA
Dynamics of TCR ß repertoires from serial sampling of healthy individuals
TCR 动态 - 来自健康个体连续采样的所有内容
  • DOI:
    10.1101/2022.05.11.491566
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayestaran I
  • 通讯作者:
    Ayestaran I
The evolutionary dynamics and fitness landscape of clonal haematopoiesis
克隆造血的进化动力学和适应度景观
  • DOI:
    10.1101/569566
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Watson C
  • 通讯作者:
    Watson C
Modelling the age-related deceleration of clonal haematopoiesis in UK Biobank
英国生物银行模拟与年龄相关的克隆造血减速
  • DOI:
    10.1101/2023.12.21.572706
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MacGregor H
  • 通讯作者:
    MacGregor H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jamie Blundell其他文献

Clonal dynamics and somatic evolution of haematopoiesis in mouse
小鼠造血的克隆动力学和体细胞进化
  • DOI:
    10.1038/s41586-025-08625-8
  • 发表时间:
    2025-03-05
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Chiraag D. Kapadia;Nicholas Williams;Kevin J. Dawson;Caroline Watson;Matthew J. Yousefzadeh;Duy Le;Kudzai Nyamondo;Sreeya Kodavali;Alex Cagan;Sarah Waldvogel;Xiaoyan Zhang;Josephine De La Fuente;Daniel Leongamornlert;Emily Mitchell;Marcus A. Florez;Krzysztof Sosnowski;Rogelio Aguilar;Alejandra Martell;Anna Guzman;David Harrison;Laura J. Niedernhofer;Katherine Y. King;Peter J. Campbell;Jamie Blundell;Margaret A. Goodell;Jyoti Nangalia
  • 通讯作者:
    Jyoti Nangalia

Jamie Blundell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
  • 批准号:
    2327030
  • 财政年份:
    2024
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Continuing Grant
RAPID: Real-time Forecasting Models for Hospitalizations of Infectious Disease in the USA
RAPID:美国传染病住院实时预测模型
  • 批准号:
    2333435
  • 财政年份:
    2023
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Standard Grant
Rheology for near real time forecasting of lava flows
用于熔岩流近实时预测的流变学
  • 批准号:
    2223098
  • 财政年份:
    2023
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel integration of direct measurements with numerical models for real-time estimation and forecasting of streamflow response to cyclical processes
合作研究:直接测量与数值模型的新颖集成,用于实时估计和预测水流对循环过程的响应
  • 批准号:
    2139649
  • 财政年份:
    2022
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Integration of Direct Measurements with Numerical Models for Real-time Estimation and Forecasting of Streamflow Response to Cyclical Processes
合作研究:直接测量与数值模型的新颖集成,用于实时估计和预测水流对循环过程的响应
  • 批准号:
    2139663
  • 财政年份:
    2022
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Standard Grant
Leveraging world's largest offshore observation networks and physics-based model integration with machine learning for real-time tsunami and storm surge forecasting along the Pacific coasts of Japan
利用世界上最大的海上观测网络以及基于物理的模型与机器学习的集成,对日本太平洋沿岸的实时海啸和风暴潮进行预测
  • 批准号:
    22K14459
  • 财政年份:
    2022
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a Real-Time Intelligent Platform for Wastewater Influent Forecasting
废水进水预测实时智能平台开发
  • 批准号:
    533918-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Collaborative Research and Development Grants
RAPID: Real-time Forecasting of COVID-19 risk in the USA
RAPID:美国 COVID-19 风险的实时预测
  • 批准号:
    2108526
  • 财政年份:
    2021
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Standard Grant
Developing the real-time GDP forecasting model
开发实时GDP预测模型
  • 批准号:
    21K20162
  • 财政年份:
    2021
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Real-time Space Weather forecasting using satellite data and machine learning
使用卫星数据和机器学习进行实时空间天气预报
  • 批准号:
    2607345
  • 财政年份:
    2021
  • 资助金额:
    $ 151.19万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了