Bacterial antibiotic resistance: structure, mechanism and inhibition of ABC transporters responsible for drug efflux and cell wall biogenesis.
细菌抗生素耐药性:负责药物流出和细胞壁生物发生的 ABC 转运蛋白的结构、机制和抑制。
基本信息
- 批准号:MR/V000616/1
- 负责人:
- 金额:$ 246.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bacterial diseases impose a terrible burden of suffering and death throughout the world but for the past 70 years antibiotics have shielded us from the worst. However, we now face serious peril as the development of antibiotic resistance may, in the words of recent Chief Medical Officer Professor Dame Sally Davies, "kill us before climate change." Increased resistance threatens to revert modern healthcare to a pre-antibiotic era where minor infections become life threatening and even routine surgical procedures carry significant risk. The severity of the problem is acknowledged globally by the World Health Organization, which has initiated coordinated efforts to address this global emergency, which unchecked will lead to millions of premature deaths.Bacteria like E. coli and Salmonella are surrounded by a complex cell envelope consisting of two lipid membranes, which provides a formidable barrier to the entry of many antibiotics. Resistance to antibiotics is further established by dedicated membrane machineries that recognise antibiotics and eject them from the cell before they have an opportunity to act. These drug efflux pumps are composed of three separate components: an inner transporter protein (of which three different classes exist) which recognizes and passes drugs to a TolC "trash chute" open to the cell exterior, and a critical adaptor protein which controls the assembly of this molecular machine.Our laboratory has over 30 years built a research program tackling the molecular mechanisms by which bacteria exhibit antibiotic resistance. We have succeeded in describing the atomic structure and action of the TolC exit duct, and the adaptor proteins. We have also atomically defined their interactions with each other, and the transporter component in the most widespread class of these efflux pumps. This culminated in the first precise atomic view of a complete assembled multidrug efflux pump, provided insight into how it opens to allow expulsion, and how this might be inhibited. More recently, we described the structure of a previously uncharacterised transporter component of a pump revealing a novel structure and atypical mechanism of drug efflux. A related, but distinct, transporter acting in concert with chaperone proteins uses the same architecture to transport lipoproteins, vital components of the protective cell envelope, to the outer membrane. Without this system functioning properly, bacteria cannot survive, making it an attractive target for therapeutic intervention. We seek a continuation of funding for our work, to study these related transporters in drug efflux and lipoprotein transport. By understanding how they recognise the molecules they transport and interact with their partner proteins we will develop a better understanding of the molecular mechanisms by which bacteria resist antibiotics and raise the possibility of counteracting them.
细菌性疾病给全世界带来了可怕的痛苦和死亡负担,但在过去70年里,抗生素使我们免受最坏的影响。然而,我们现在面临着严重的危险,因为抗生素耐药性的发展,用最近首席医疗官萨莉·戴维斯教授的话来说,可能“在气候变化之前杀死我们”。耐药性的增加有可能使现代医疗保健退回到抗生素之前的时代,在那个时代,轻微的感染就会危及生命,甚至常规的外科手术都有很大的风险。世界卫生组织在全球范围内承认了这一问题的严重性,并发起了协调一致的努力,以解决这一全球紧急情况,如果不加以控制,将导致数百万人过早死亡。像大肠杆菌和沙门氏菌这样的细菌被由两层脂质膜组成的复杂细胞包膜所包围,这为许多抗生素的进入提供了强大的屏障。对抗生素的耐药性是由专门的膜机器进一步建立的,这些机器识别抗生素并在它们有机会起作用之前将它们从细胞中驱逐出去。这些药物外排泵由三个独立的组件组成:一个内部转运蛋白(存在三种不同的类别),它识别药物并将药物传递到向细胞外部开放的TolC“垃圾槽”,以及一个关键的接头蛋白,它控制这个分子机器的组装。30多年来,我们的实验室建立了一个研究项目,研究细菌表现出抗生素耐药性的分子机制。我们已经成功地描述了TolC出口管道的原子结构和作用,以及接头蛋白。我们也从原子上定义了它们之间的相互作用,以及这些外排泵中最广泛的一类中的转运体成分。这最终导致了第一个完整组装的多药物外排泵的精确原子视图,提供了对它如何打开以允许排出以及如何抑制这种排出的见解。最近,我们描述了以前未表征的泵的转运体成分的结构,揭示了药物外排的新结构和非典型机制。一种相关但不同的转运蛋白与伴侣蛋白协同作用,使用相同的结构将脂蛋白(保护性细胞包膜的重要组成部分)运输到外膜。没有这个系统的正常运作,细菌就无法生存,这使它成为治疗干预的一个有吸引力的目标。我们寻求继续资助我们的工作,以研究这些相关的转运蛋白在药物外排和脂蛋白运输。通过了解它们如何识别它们运输的分子并与伴侣蛋白相互作用,我们将更好地了解细菌抵抗抗生素的分子机制,并提高对抗抗生素的可能性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural basis of lipoprotein recognition by the bacterial Lol trafficking chaperone LolA.
- DOI:10.1073/pnas.2208662119
- 发表时间:2022-09-06
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Salmonella invasion of a cell is self-limiting due to effector-driven activation of N-WASP.
由于效应器驱动的 N-WASP 激活,沙门氏菌对细胞的侵袭具有自限性。
- DOI:10.17863/cam.95886
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Davidson A
- 通讯作者:Davidson A
Bacterial Metal Resistance: Coping with Copper without Cooperativity?
- DOI:10.1128/mbio.00653-21
- 发表时间:2021-06-29
- 期刊:
- 影响因子:6.4
- 作者:Greene NP;Koronakis V
- 通讯作者:Koronakis V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vassilis Koronakis其他文献
emSalmonella/em invasion of a cell is self-limiting due to effector-driven activation of N-WASP
沙门氏菌入侵细胞是自我限制的,这是由于效应物驱动的 N-WASP 激活所致
- DOI:
10.1016/j.isci.2023.106643 - 发表时间:
2023-05-19 - 期刊:
- 影响因子:4.100
- 作者:
Anthony Davidson;Peter J. Hume;Nicholas P. Greene;Vassilis Koronakis - 通讯作者:
Vassilis Koronakis
Synthesis, maturation and export of the E. coli hemolysin
- DOI:
10.1007/s004300050016 - 发表时间:
1996-09-03 - 期刊:
- 影响因子:3.000
- 作者:
Vassilis Koronakis;C. Hughes - 通讯作者:
C. Hughes
Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling
利用致病性大肠杆菌模拟跨膜受体信号传导
- DOI:
10.1038/nrmicro1391 - 发表时间:
2006-04-03 - 期刊:
- 影响因子:103.300
- 作者:
Richard D. Hayward;John M. Leong;Vassilis Koronakis;Kenneth G. Campellone - 通讯作者:
Kenneth G. Campellone
The sequences of the traJ gene and the 5′ end of the traY gene of the resistance plasmid R1
- DOI:
10.1007/bf00330394 - 发表时间:
1986-04-01 - 期刊:
- 影响因子:2.100
- 作者:
Vassilis Koronakis;Gregor Högenauer - 通讯作者:
Gregor Högenauer
Vassilis Koronakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vassilis Koronakis', 18)}}的其他基金
Antibiotic resistance in Gram-negative bacteria: structure and function of TolC-dependent multidrug efflux pumps
革兰氏阴性菌的抗生素耐药性:TolC 依赖性多药外排泵的结构和功能
- 批准号:
MR/N000994/1 - 财政年份:2015
- 资助金额:
$ 246.34万 - 项目类别:
Research Grant
Salmonella subversion of GTPase signalling at the host cell membrane, a key aspect of pathogen infection
沙门氏菌破坏宿主细胞膜上的 GTP 酶信号,这是病原体感染的一个关键方面
- 批准号:
MR/L008122/1 - 财政年份:2014
- 资助金额:
$ 246.34万 - 项目类别:
Research Grant
相似国自然基金
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
- 批准号:21477024
- 批准年份:2014
- 资助金额:86.0 万元
- 项目类别:面上项目
相似海外基金
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 246.34万 - 项目类别:
Fellowship
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Operating Grants
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Predicting the Absence of Serious Bacterial Infection in the PICU
预测 PICU 中不存在严重细菌感染
- 批准号:
10806039 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Infection-Dependent Vulnerabilities of Gram-negative Bacterial Pathogens
革兰氏阴性细菌病原体的感染依赖性脆弱性
- 批准号:
10592676 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Atomically precise, multi-ligand functionalised metal nanoclusters to combat bacterial antibiotic resistance
原子精确的多配体功能化金属纳米簇可对抗细菌抗生素耐药性
- 批准号:
2882405 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Studentship
Protein Transport Across Membrane by Bacterial Pathogens
细菌病原体跨膜蛋白质运输
- 批准号:
10711479 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Discovery and characterization of bacterial cell envelope assembly and remodeling networks that modulate tolerance to antibiotics
调节抗生素耐受性的细菌细胞包膜组装和重塑网络的发现和表征
- 批准号:
10711329 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:
10644889 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别:
Optimization of protective antibodies response against bacterial adhesins
针对细菌粘附素的保护性抗体反应的优化
- 批准号:
10731509 - 财政年份:2023
- 资助金额:
$ 246.34万 - 项目类别: