Vulnerability of long-range axons in tauopathy
tau蛋白病中长程轴突的脆弱性
基本信息
- 批准号:MR/W005506/1
- 负责人:
- 金额:$ 55.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dementia, including Alzheimer's disease, is already one of most devastating illnesses and will get more common over the next few decades. Right now there are no treatments that can stop the disease progressing. The main symptoms of dementia involve the collapse of thinking skills like memory and problem-solving. The loss of these thinking skills is caused by the breakdown of communication within the brain. These skills require the careful coordination of activity in different parts of the brain. This communication between different brain areas is one of the first things affected as the disease takes hold. In this proposal, we aim to show why this long-range communication between different brain regions is selectively disrupted and to use this information to develop new treatments that target these early phases of dementia. Communication between different parts of the brain relies on signals passing between nerve cells, or neurons. To allow a neuron in one brain area to directly communicate with a neuron in another part of the brain, it has a very long protrusion, called its axon, which extends out away from neuron's home location into different brain areas. This axon may have to extend very long distances within the brain, even passing right over to the other side to reach its target area. The idea underlying this proposal is that it is these long axons that are vulnerable to damage in the early stages of dementia. Because these axons are so long, the neurons face a very tricky problem of how to get all the necessary nutrients down all the way to the end of the axons. One of the key things that neurons must transport down their axon are mitochondria, which supply the cell's energy. They provide the energy for the axons to stay healthy and to power communication with its target neurons. These mitochondria are transported like little mobile power stations down long tracks inside the axon. In our latest experiments, we have seen that if neurons are in an early stage of dementia, their mitochondria simply cannot travel down these train tracks as well as they do normally. We believe that this could present serious problems for the energy demands at the end of a long axon and maybe why these particularly long axons find themselves vulnerable to the effects of dementia. In the study, we will link this broken mitochondrial transport to the damage that is done to axons during dementia. If our idea is correct, when we image axons far away from their home area, we are more likely to see signs of sickness before we see it in axons that are close to home. To relate this back to the poor coordination of brain activity seen in dementia patients, we will check for impaired communication between those long axons with their target neurons. If these long-range axons are getting sick because of their transport problems, we can use that knowledge to treat them. As such, we will test if drugs that speed up transport of mitochondria in axons can protect long-range axons from getting sick. This will provide the proof-of-concept for development of new treatments for dementia.In this project, it is crucial that we see the axons as they are in the brain, with their complex shapes that determine which brain areas they connect with. This presents challenges because axons and their mitochondria are tiny, and they are buried deep inside the brain. To overcome these challenges, we will use a collection of cutting-edge imaging techniques. The first of these uses powerful lasers that can image deep inside the living brain without damaging it. The second approach uses special chemical treatments to make the brain transparent, like glass, so we can image through it, revealing the axons inside. The third approach uses another chemical trick to help us see the tiny mitochondria - by infusing an expanding gel into the brain we can make them bigger. This will allow us to see far greater detail about the inner workings of axons than previously possible.
痴呆症,包括阿尔茨海默病,已经是最具破坏性的疾病之一,并将在未来几十年变得更加普遍。目前还没有任何治疗方法可以阻止这种疾病的发展。痴呆症的主要症状包括思维能力的崩溃,比如记忆和解决问题的能力。这些思维能力的丧失是由于大脑内部沟通的中断造成的。这些技能需要仔细协调大脑不同部位的活动。这种不同大脑区域之间的交流是疾病发生时最先受到影响的事情之一。在这项提议中,我们的目标是展示为什么不同大脑区域之间的远程通信被选择性地中断,并利用这些信息开发针对这些早期痴呆阶段的新疗法。大脑不同部分之间的交流依赖于神经细胞或神经元之间传递的信号。为了让一个大脑区域的神经元与另一个大脑区域的神经元直接交流,它有一个很长的突起,叫做轴突,它从神经元的大本营延伸到不同的大脑区域。这个轴突可能需要在大脑内延伸很长的距离,甚至可以直接穿过另一侧到达目标区域。这一提议背后的想法是,在痴呆症的早期阶段,正是这些长轴突容易受到损害。由于这些轴突很长,神经元面临着一个非常棘手的问题,即如何将所有必需的营养物质一直输送到轴突的末端。神经元必须沿轴突向下运输的关键物质之一是线粒体,它为细胞提供能量。它们为轴突提供保持健康的能量,并为其与目标神经元的通信提供动力。这些线粒体像小小的移动发电站一样在轴突内沿着长长的轨道运输。在我们最新的实验中,我们已经看到,如果神经元处于痴呆症的早期阶段,它们的线粒体就不能像正常情况下那样沿着这些轨道行进。我们认为,这可能会给长轴突末端的能量需求带来严重的问题,这可能是为什么这些特别长的轴突发现自己容易受到痴呆症的影响。在这项研究中,我们将把这种断裂的线粒体运输与痴呆期间轴突的损伤联系起来。如果我们的想法是正确的,那么当我们想象远离母区域的轴突时,我们更有可能在看到靠近母区域的轴突之前看到疾病的迹象。为了将这与痴呆症患者大脑活动协调性差联系起来,我们将检查这些长轴突与目标神经元之间的沟通受损。如果这些远程轴突因为运输问题而生病,我们可以利用这些知识来治疗它们。因此,我们将测试加速轴突线粒体运输的药物是否能保护远距离轴突免受疾病的侵害。这将为开发新的痴呆症治疗方法提供概念验证。在这个项目中,至关重要的是我们要看到轴突在大脑中的样子,它们复杂的形状决定了它们与大脑的哪个区域相连。这带来了挑战,因为轴突和它们的线粒体很小,而且它们深埋在大脑内部。为了克服这些挑战,我们将使用一系列尖端的成像技术。第一种方法是使用强大的激光,可以在不损害大脑的情况下对活体大脑深处进行成像。第二种方法使用特殊的化学处理,使大脑变得透明,就像玻璃一样,这样我们就可以通过它成像,揭示里面的轴突。第三种方法使用另一种化学技巧来帮助我们看到微小的线粒体——通过向大脑注入一种膨胀凝胶,我们可以使它们变大。这将使我们能够比以前更详细地了解轴突的内部工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ashby其他文献
日本における公論システムの形成 : 比較のために
日本公开辩论制度的形成:比较
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Hiroko Saito;Michael Ashby;山崎吉朗;酒井英樹・工藤洋路・加藤由美子・福本優美子;天野真志;三谷博 - 通讯作者:
三谷博
Ethical Regulators and Super-Ethical Systems
道德监管者和超道德系统
- DOI:
10.20944/preprints201907.0349.v1 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Ashby - 通讯作者:
Michael Ashby
Sex, Drugs, and a Few Other Things
- DOI:
10.1007/s11673-017-9786-9 - 发表时间:
2017-06-12 - 期刊:
- 影响因子:1.500
- 作者:
Michael Ashby - 通讯作者:
Michael Ashby
Cui Bono?
- DOI:
10.1007/s11673-020-09980-z - 发表时间:
2020-05-26 - 期刊:
- 影响因子:1.500
- 作者:
Michael Ashby;Bronwen Morrell - 通讯作者:
Bronwen Morrell
Miyagi Shiryounet (Network for Preserving Historical Materials)A regional initiative to preserve historical materials
宫城县史料网(历史资料保存网络)一项保护历史资料的区域倡议
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hiroko Saito;Michael Ashby;山崎吉朗;酒井英樹・工藤洋路・加藤由美子・福本優美子;天野真志 - 通讯作者:
天野真志
Michael Ashby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ashby', 18)}}的其他基金
NRT-IGE: Advancing Graduate Education in the Chemical Sciences
NRT-IGE:推进化学科学研究生教育
- 批准号:
1633008 - 财政年份:2016
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Template neuronal networks in developing neocortex
发育中新皮质的模板神经元网络
- 批准号:
MR/J013188/1 - 财政年份:2013
- 资助金额:
$ 55.58万 - 项目类别:
Research Grant
I-Corps: Device for Producing the Non-antibiotic Antimicrobial Hypothiocyanite (HTC) for Use in Food Safety
I-Corps:用于生产用于食品安全的非抗生素抗菌剂次硫氰酸盐 (HTC) 的装置
- 批准号:
1246308 - 财政年份:2012
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Chemical Mechanisms of Reactive Sulfur Species
活性硫的化学机理
- 批准号:
0911328 - 财政年份:2009
- 资助金额:
$ 55.58万 - 项目类别:
Continuing Grant
Inorganic Reactive Sulfur Species and Biofilms
无机活性硫物质和生物膜
- 批准号:
0503984 - 财政年份:2005
- 资助金额:
$ 55.58万 - 项目类别:
Continuing Grant
Dynamic Properties of Misdirected Ligand Complexes
错误定向配体复合物的动态性质
- 批准号:
9612869 - 财政年份:1997
- 资助金额:
$ 55.58万 - 项目类别:
Continuing Grant
相似国自然基金
基于Relm-β核转位激活EndMT促进肺动脉高压研究肺心汤预防 Long COVID 机制
- 批准号:2025JJ90008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
维生素D调控巨噬细胞极化在改善“Long COVID”中作用和机制的分子流行病学研究
- 批准号:82373643
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
水稻LONG PANICLE1基因调控穗长的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long-TSLP诱导的M2型巨噬细胞调控肺成纤维细胞线粒体融合在哮喘气道重塑中的作用和机制
- 批准号:81970032
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
不同远距离基因互作对胚胎干细胞中Sox2基因调控的研究
- 批准号:31970592
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
转座因子调控多能干细胞染色质三维结构中的作用
- 批准号:31970589
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
LONG8及其互作蛋白LGIP1调控水稻籽粒大小的分子机理研究
- 批准号:31871219
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
拟南芥微管结合蛋白Long Seed1调控种子大小的分子机制研究
- 批准号:31770205
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
- 批准号:
24K17016 - 财政年份:2024
- 资助金额:
$ 55.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Triple hybrid fuel-cell-based propulsion for long-range eVTOL operations
用于远程 eVTOL 操作的基于三重混合燃料电池的推进系统
- 批准号:
IM230100644 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Mid-Career Industry Fellowships
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
- 批准号:
EP/W022923/1 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Research Grant
Q-CALC (Quantum Contextual Artificial intelligence for Long-range Correlations)
Q-CALC(用于远程关联的量子上下文人工智能)
- 批准号:
10085547 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Small Business Research Initiative
Development of Antisense Oligonucleotides to Regulate Gamma' Fibrinogen Levels
开发反义寡核苷酸来调节γ纤维蛋白原水平
- 批准号:
10759950 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Long-range GABAergic inhibition coordinates hippocampal-subcortical circuit activity in memory formation
长程 GABA 能抑制协调记忆形成中的海马-皮层下回路活动
- 批准号:
10658072 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Light amplification in organic thin films by wgm resonance of long-range surface plasmons and its applications towards wavelength control
通过长程表面等离子体的 wgm 共振实现有机薄膜中的光放大及其在波长控制中的应用
- 批准号:
23K04881 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Short- and Long-Range Structural Complexity from Ortho-arylene Foldamers
邻亚芳基折叠体的短程和长程结构复杂性
- 批准号:
2304670 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant














{{item.name}}会员




