ALGORITHM DEVELOPMENT & SOFTWARE DESIGN FOR POPULATION KINETIC ANALYSIS

算法开发

基本信息

  • 批准号:
    6123528
  • 负责人:
  • 金额:
    $ 60.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-03-01 至 2000-02-29
  • 项目状态:
    已结题

项目摘要

The specific are: 1. Develop convergent numerical algorithms for the parametric and nonparametric estimators in population kinetic analysis to be implemented in Project 2. 2. Analyze the statistical properties of the estimators in Specific Aim 1: consistency, asymptotic normality, asymptotic confidence regions and hypothesis testing. 3. Investigate efficiency and robustness of the estimators in Specific Aim I via simulation studies. For the parametric case, we will develop four algorithms: a "true" maximum likelihood (ML) algorithm, a Global Two Stage (GTS) algorithm, a NONMEM type algorithm, and a Lindstrom-Bates type algorithm. The ML algorithm is based on Monte Carlo integration for evaluating the objective function. The GTS, NONMEM, and Lindstrom-Bates type algorithms are all based on the extended least squares (ELS) method. For the nonparametric case, we will develop a Mallet type algorithm for mixed effects models. For the parametric case, consistency is a difficult issue. Consistency means that the estimated values converge to the true values as the number of subjects gets arbitrarily large. It is important to note that the original estimation procedures ot'NONMEM and Lindstrom-Bates are not consistent for 2eneral nonlinear models. The only algorithm that is consistent relative to the true parameter values is the true maximum likelihood algorithm. For the class of ELS algorithms we develop, there is a generalized notion of consistency, which means that the estimated values converge to the values that best approximate the model. We will investigate the required theory for the generalized consistency and asymptotic normality of these algorithms. The formulas for the asymptotic confidence intervals and hypothesis testing will follow from the same theory. For the nonparametric case, the consistency of the method, relative to the true values of the model, has already been established. What remains then is the determination of the asymptotic confidence intervals for estimated parameters such as means, medians, trimmed means, etc. At present these results have not been derived for the nonparametric case. We will use the theory of maximum likelihood estimation in infinite dimensional spaces for this purpose. Efficiency of an (unbiased) estimator is measured by the generalized variance of estimated values, with the Cramer-Rao lower bound being optimal. Relative efficiency of two estimators compares the corresponding generalized variances. Robustness measures how an algorithm performs when there are violations in the model and/or probability distribution assumptions. By utilizing Monte Carlo simulation studies, these properties can be investigated without requiring 1 asymptotic conditions.
具体有:1。发展收敛的数值算法

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID M FOSTER其他文献

DAVID M FOSTER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID M FOSTER', 18)}}的其他基金

Identifiability of Nonlinear Biological Models
非线性生物模型的可识别性
  • 批准号:
    7405316
  • 财政年份:
    2005
  • 资助金额:
    $ 60.37万
  • 项目类别:
SERVICE & TRAINING IN RFPK
服务
  • 批准号:
    6319973
  • 财政年份:
    1999
  • 资助金额:
    $ 60.37万
  • 项目类别:
DISSEMINATION OF INFORMATION IN RFPK
RFPK 中的信息传播
  • 批准号:
    6319974
  • 财政年份:
    1999
  • 资助金额:
    $ 60.37万
  • 项目类别:
EFFECT OF ETHANOL ON LIPOPROTEIN KINETICS ASSESSED BY POPULATION ANALYSIS
通过群体分析评估乙醇对脂蛋白动力学的影响
  • 批准号:
    6123534
  • 财政年份:
    1999
  • 资助金额:
    $ 60.37万
  • 项目类别:
DECONVOLUTION MODELING TOOL FOR SAAM II
SAAM II 的反卷积建模工具
  • 批准号:
    2713849
  • 财政年份:
    1999
  • 资助金额:
    $ 60.37万
  • 项目类别:
RESOURCE FACILITY FOR POPULATION KINETICS
种群动力学资源设施
  • 批准号:
    2883762
  • 财政年份:
    1998
  • 资助金额:
    $ 60.37万
  • 项目类别:
ENHANCEMENT AND SUPPORT OF THE SAAM II SOFTWARE SYSTEM
SAAM II 软件系统的增强和支持
  • 批准号:
    2777706
  • 财政年份:
    1998
  • 资助金额:
    $ 60.37万
  • 项目类别:
ENHANCEMENT AND SUPPORT OF THE SAAM II SOFTWARE SYSTEM
SAAM II 软件系统的增强和支持
  • 批准号:
    2876725
  • 财政年份:
    1998
  • 资助金额:
    $ 60.37万
  • 项目类别:
RESOURCE FACILITY FOR POPULATION KINETICS
种群动力学资源设施
  • 批准号:
    6165452
  • 财政年份:
    1998
  • 资助金额:
    $ 60.37万
  • 项目类别:
Resource Facility for Population Kinetics
群体动力学资源设施
  • 批准号:
    7226197
  • 财政年份:
    1998
  • 资助金额:
    $ 60.37万
  • 项目类别:

相似海外基金

Molecular Imaging Biomedical Resource Core
分子成像生物医学资源核心
  • 批准号:
    10747619
  • 财政年份:
    2023
  • 资助金额:
    $ 60.37万
  • 项目类别:
Biomedical Resource Core
生物医学资源核心
  • 批准号:
    10747705
  • 财政年份:
    2023
  • 资助金额:
    $ 60.37万
  • 项目类别:
Intravital Microscopy Biomedical Resource Core
活体显微镜生物医学资源核心
  • 批准号:
    10747618
  • 财政年份:
    2023
  • 资助金额:
    $ 60.37万
  • 项目类别:
Biomedical Resource Core
生物医学资源核心
  • 批准号:
    10754083
  • 财政年份:
    2023
  • 资助金额:
    $ 60.37万
  • 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
  • 批准号:
    10797623
  • 财政年份:
    2022
  • 资助金额:
    $ 60.37万
  • 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
  • 批准号:
    10653773
  • 财政年份:
    2022
  • 资助金额:
    $ 60.37万
  • 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
  • 批准号:
    10430665
  • 财政年份:
    2022
  • 资助金额:
    $ 60.37万
  • 项目类别:
The 1958 Birth Cohort Biomedical Resource - facilitating access to data and samples and enhancing future utility
1958 年出生队列生物医学资源 - 促进数据和样本的获取并增强未来的效用
  • 批准号:
    G1001799/2
  • 财政年份:
    2013
  • 资助金额:
    $ 60.37万
  • 项目类别:
    Research Grant
The 1958 Birth Cohort Biomedical Resource - facilitating access to data and samples and enhancing future utility
1958 年出生队列生物医学资源 - 促进数据和样本的获取并增强未来的效用
  • 批准号:
    G1001799/1
  • 财政年份:
    2011
  • 资助金额:
    $ 60.37万
  • 项目类别:
    Research Grant
Vervet Research Colony as a Biomedical Resource
作为生物医学资源的黑长尾黑长尾猴研究群
  • 批准号:
    7894014
  • 财政年份:
    2009
  • 资助金额:
    $ 60.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了