ALGORITHM DEVELOPMENT & SOFTWARE DESIGN FOR POPULATION KINETIC ANALYSIS
算法开发
基本信息
- 批准号:6123528
- 负责人:
- 金额:$ 60.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-03-01 至 2000-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The specific are: 1. Develop convergent numerical algorithms for
the parametric and nonparametric estimators in population kinetic
analysis to be implemented in Project 2.
2. Analyze the statistical properties of the estimators in Specific
Aim 1: consistency, asymptotic normality, asymptotic confidence
regions and hypothesis testing.
3. Investigate efficiency and robustness of the estimators in
Specific Aim I via simulation studies.
For the parametric case, we will develop four algorithms: a "true"
maximum likelihood (ML) algorithm, a Global Two Stage (GTS) algorithm,
a NONMEM type algorithm, and a Lindstrom-Bates type algorithm. The ML
algorithm is based on Monte Carlo integration for evaluating the
objective function. The GTS, NONMEM, and Lindstrom-Bates type
algorithms are all based on the extended least squares (ELS) method.
For the nonparametric case, we will develop a Mallet type algorithm
for mixed effects models.
For the parametric case, consistency is a difficult issue.
Consistency means that the estimated values converge to the true
values as the number of subjects gets arbitrarily large. It is
important to note that the original estimation procedures ot'NONMEM
and Lindstrom-Bates are not consistent for 2eneral nonlinear models.
The only algorithm that is consistent relative to the true parameter
values is the true maximum likelihood algorithm. For the class of ELS
algorithms we develop, there is a generalized notion of consistency,
which means that the estimated values converge to the values that best
approximate the model. We will investigate the required theory for
the generalized consistency and asymptotic normality of these
algorithms. The formulas for the asymptotic confidence intervals and
hypothesis testing will follow from the same theory.
For the nonparametric case, the consistency of the method, relative to
the true values of the model, has already been established. What
remains then is the determination of the asymptotic confidence
intervals for estimated parameters such as means, medians, trimmed
means, etc. At present these results have not been derived for the
nonparametric case. We will use the theory of maximum likelihood
estimation in infinite dimensional spaces for this purpose.
Efficiency of an (unbiased) estimator is measured by the generalized
variance of estimated values, with the Cramer-Rao lower bound being
optimal. Relative efficiency of two estimators compares the
corresponding generalized variances. Robustness measures how an
algorithm performs when there are violations in the model and/or
probability distribution assumptions. By utilizing Monte Carlo
simulation studies, these properties can be investigated without
requiring 1 asymptotic conditions.
具体有:1。发展收敛的数值算法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M FOSTER其他文献
DAVID M FOSTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M FOSTER', 18)}}的其他基金
EFFECT OF ETHANOL ON LIPOPROTEIN KINETICS ASSESSED BY POPULATION ANALYSIS
通过群体分析评估乙醇对脂蛋白动力学的影响
- 批准号:
6123534 - 财政年份:1999
- 资助金额:
$ 60.37万 - 项目类别:
ENHANCEMENT AND SUPPORT OF THE SAAM II SOFTWARE SYSTEM
SAAM II 软件系统的增强和支持
- 批准号:
2777706 - 财政年份:1998
- 资助金额:
$ 60.37万 - 项目类别:
ENHANCEMENT AND SUPPORT OF THE SAAM II SOFTWARE SYSTEM
SAAM II 软件系统的增强和支持
- 批准号:
2876725 - 财政年份:1998
- 资助金额:
$ 60.37万 - 项目类别:
相似海外基金
Intravital Microscopy Biomedical Resource Core
活体显微镜生物医学资源核心
- 批准号:
10747618 - 财政年份:2023
- 资助金额:
$ 60.37万 - 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
- 批准号:
10797623 - 财政年份:2022
- 资助金额:
$ 60.37万 - 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
- 批准号:
10653773 - 财政年份:2022
- 资助金额:
$ 60.37万 - 项目类别:
National Biomedical Resource for Electron-Spin Resonance Spectroscopy (ACERT)
国家电子自旋共振光谱生物医学资源 (ACERT)
- 批准号:
10430665 - 财政年份:2022
- 资助金额:
$ 60.37万 - 项目类别:
The 1958 Birth Cohort Biomedical Resource - facilitating access to data and samples and enhancing future utility
1958 年出生队列生物医学资源 - 促进数据和样本的获取并增强未来的效用
- 批准号:
G1001799/2 - 财政年份:2013
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
The 1958 Birth Cohort Biomedical Resource - facilitating access to data and samples and enhancing future utility
1958 年出生队列生物医学资源 - 促进数据和样本的获取并增强未来的效用
- 批准号:
G1001799/1 - 财政年份:2011
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
Vervet Research Colony as a Biomedical Resource
作为生物医学资源的黑长尾黑长尾猴研究群
- 批准号:
7894014 - 财政年份:2009
- 资助金额:
$ 60.37万 - 项目类别: