Facility for high temperature, high pressure rheology of geomaterials

岩土材料高温高压流变装置

基本信息

  • 批准号:
    NE/T009098/1
  • 负责人:
  • 金额:
    $ 38.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The flow of geomaterials through the natural environment is of great societal and economic importance. Understanding the flow of these materials - such as magma, submarine sediments, drilling muds, and fluids associated with carbon capture and storage (CCS) - is essential if we are to forecast volcanic eruptions, protect undersea telecoms infrastructure, and lower the impacts of fossil fuel production and use. The key to understanding and predicting flow behaviour lies in accurate measurements of 'rheology', which describes how a material deforms when a force acts on it. This project will create a facility for measuring the rheology of geomaterials, train academic and industrial researchers from the UK's Earth and environmental sciences community to use it, and act as a forum for knowledge exchange in the field of rheology and flow of geomaterials.Geomaterials are often complex. For example, magma is made up of three different phases - molten rock, solid crystals, and deformable gas bubbles - and their relative proportions change as the magma rises through the Earth's crust, decompresses, and cools down. It is common for all geomaterials to change their rheology as they experience extreme variations in temperature and pressure as they move through the upper crust, or across the ocean floor. As a result, the rheology of geomaterials is highly complex, requiring specialist equipment to measure it. It is also essential to be able to measure it over a wide range of pressures and temperatures. There is currently no facility available in the UK that can do this.The new facility is unique because:1. It can operate over temperatures from -100C to +1600C covering the full range of temperatures found on the Earth's surface, from Antarctic ice-sheets to volcanic lava flows.2. It can operate at pressures up to 1000 times greater than atmospheric pressure, up to 300C. This covers pressures and temperatures in the deepest oceans, and the deepest boreholes in the Earth's crust.3. It includes a unique instrument, capable of measuring rheology while replicating the complex changes in flow speed and direction that are common in natural environmental flows. The manufacturer will work with us to validate this functionality and extend it from 600C to 1000C so that we can replicate complex flows of magma.4. The facility will link in with extensive existing equipment at Durham University that can be used to measure other properties of geomaterials at high temperature, such as the growth or melting of different crystals, changes to the internal structure, and physical properties of drilling muds.The facility will be used by researchers from across the UK to solve a wide range of problems, such as:* What controls where lava flows go? This depends on the rheology of lava as it cools and solidifies.* How can we protect aircraft jet engines from airborne particles? This depends on the mechanical properties of the material produced when the particles weld together in the engine.* How do we reduce the environmental impact of drilling for extraction of resources or energy? We can engineer effective water-based drilling muds with much lower environmental impact than current oil-based muds. We can also develop effective strategies for pumping captured CO2 into crustal storage reservoirs to reduce its climate impact. Both applications depend on measuring the rheological behaviour of geomaterials at the high pressures and temperatures found in the crust.The UK has a large, world-leading community of researchers working on environmental flows involving geomaterials. We will promote the facility as a hub for this research by making it available at cost-price to internal and external users, and by running training and knowledge exchange workshops to bring researchers from universities and industry together. We will support users in preparing research projects that use the facility, and keep an open repository of outputs and data.
地质材料在自然环境中的流动具有重大的社会和经济意义。如果我们要预测火山爆发、保护海底电信基础设施以及降低化石燃料生产和使用的影响,了解这些物质的流动--如岩浆、海底沉积物、钻井泥浆以及与碳捕获和储存(CCS)相关的流体--至关重要。理解和预测流动行为的关键在于准确测量“流变学”,即描述材料在受力时如何变形。该项目将创建一个测量地质材料流变学的设施,培训英国地球和环境科学界的学术和工业研究人员使用该设施,并作为岩土材料流变学和流动领域知识交流的论坛。岩土材料通常很复杂。例如,岩浆由三种不同的相组成-熔化的岩石,固体晶体和可变形的气泡-它们的相对比例随着岩浆上升穿过地壳,减压和冷却而变化。所有地质材料在穿过上地壳或穿过海底时,都会经历温度和压力的极端变化,从而改变其流变性。因此,岩土材料的流变性非常复杂,需要专门的设备来测量,还必须能够在广泛的压力和温度范围内进行测量。目前在英国还没有这样的设施。新的设施是独一无二的,因为:1。它可以在-100摄氏度到+1600摄氏度的温度范围内工作,覆盖了地球表面的所有温度范围,从南极冰盖到火山熔岩流。它可以在比大气压高1000倍的压力下工作,最高可达300 ℃。这包括海洋最深处的压力和温度,以及地壳最深处的钻孔。它包括一个独特的仪器,能够测量流变学,同时复制在自然环境流动中常见的流动速度和方向的复杂变化。制造商将与我们合作,以验证这一功能,并将其从600 C扩展到1000 C,以便我们可以复制复杂的岩浆流。4.该设施将与达勒姆大学现有的大量设备连接,这些设备可用于测量高温下地质材料的其他特性,例如不同晶体的生长或熔化,内部结构的变化以及钻井泥浆的物理特性。该设施将被英国各地的研究人员用于解决一系列广泛的问题,例如:* 什么控制熔岩流的流向?这取决于熔岩冷却和凝固时的流变性。我们如何保护飞机喷气发动机免受空气中颗粒物的影响?这取决于颗粒在发动机中焊接在一起时产生的材料的机械性能。*我们如何减少为开采资源或能源而进行的钻探对环境的影响?我们可以设计有效的水基钻井泥浆,其对环境的影响远低于目前的油基泥浆。我们还可以制定有效的战略,将捕获的二氧化碳泵入地壳储存库,以减少其对气候的影响。这两种应用都依赖于在地壳中发现的高压和高温下测量地质材料的流变行为。英国拥有一个庞大的、世界领先的研究人员社区,致力于研究涉及地质材料的环境流动。我们将通过以成本价向内部和外部用户提供该设施,并通过举办培训和知识交流研讨会,将大学和工业界的研究人员聚集在一起,促进该设施成为这项研究的中心。我们将支持用户准备使用该设施的研究项目,并保持一个开放的产出和数据库。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Llewellin其他文献

Edward Llewellin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Llewellin', 18)}}的其他基金

NSFGEO-NERC: A general model for bubble nucleation and growth in volcanic systems
NSFGEO-NERC:火山系统中气泡成核和生长的通用模型
  • 批准号:
    NE/X016668/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.2万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Collaborative Research: Multi-scale investigation of rheology and emplacement of multi-phase lava
NSFGEO-NERC:合作研究:流变学和多相熔岩安置的多尺度研究
  • 批准号:
    NE/T009594/1
  • 财政年份:
    2019
  • 资助金额:
    $ 38.2万
  • 项目类别:
    Research Grant
NSFGEO-NERC Quantifying disequilibrium processes in basaltic volcanism
NSFGEO-NERC 量化玄武岩火山活动中的不平衡过程
  • 批准号:
    NE/N018443/1
  • 财政年份:
    2016
  • 资助金额:
    $ 38.2万
  • 项目类别:
    Research Grant
Reconstructing eruptive processes from volatile distribution in volcanic glass
从火山玻璃中的挥发物分布重建喷发过程
  • 批准号:
    NE/N002954/1
  • 财政年份:
    2016
  • 资助金额:
    $ 38.2万
  • 项目类别:
    Research Grant
Explosive volcanic eruption processes: from mesoscopic simulations to constitutive laws
火山喷发过程:从介观模拟到本构定律
  • 批准号:
    NE/D009758/2
  • 财政年份:
    2007
  • 资助金额:
    $ 38.2万
  • 项目类别:
    Fellowship
Explosive volcanic eruption processes: from mesoscopic simulations to constitutive laws
火山喷发过程:从介观模拟到本构定律
  • 批准号:
    NE/D009758/1
  • 财政年份:
    2006
  • 资助金额:
    $ 38.2万
  • 项目类别:
    Fellowship

相似国自然基金

亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
  • 批准号:
    82371379
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Ni-20Cr合金梯度纳米结构的低温构筑及其腐蚀行为研究
  • 批准号:
    52301123
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于非接触测量的超高温MEMS压力传感器基础研究
  • 批准号:
    51075375
  • 批准年份:
    2010
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
新型高性能NBN基传感器材料的性能调控及其高温导电机理研究
  • 批准号:
    51002087
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
阴离子聚合速度及副反应控制机理及其用于(甲基)丙烯酸酯室温以上常规聚合的研究
  • 批准号:
    50933002
  • 批准年份:
    2009
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
  • 批准号:
    50876120
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
智能控温兼控释药多法治癌用磁性聚合物微球
  • 批准号:
    50702037
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Facility Management, Maintenance and Operations Core
设施管理、维护和运营核心
  • 批准号:
    10793949
  • 财政年份:
    2023
  • 资助金额:
    $ 38.2万
  • 项目类别:
Facility and Building System Upgrades Support for the Howard T. Ricketts Biocontainment Laboratory
为 Howard T. Ricketts 生物防护实验室提供设施和建筑系统升级支持
  • 批准号:
    10394614
  • 财政年份:
    2021
  • 资助金额:
    $ 38.2万
  • 项目类别:
Facility and Building System Upgrades Support for the Howard T. Ricketts Biocontainment Laboratory
为 Howard T. Ricketts 生物防护实验室提供设施和建筑系统升级支持
  • 批准号:
    10631368
  • 财政年份:
    2021
  • 资助金额:
    $ 38.2万
  • 项目类别:
A Small Research Facility for Multi-phase Flows at High Pressure and Temperature
高压高温多相流小型研究设施
  • 批准号:
    EP/P020593/1
  • 财政年份:
    2017
  • 资助金额:
    $ 38.2万
  • 项目类别:
    Research Grant
Bioreactor Core Facility
生物反应器核心设施
  • 批准号:
    8309230
  • 财政年份:
    2011
  • 资助金额:
    $ 38.2万
  • 项目类别:
Confocal Microscope for Live Embryo Imaging in a Shared Resource Facility
在共享资源设施中进行活体胚胎成像的共焦显微镜
  • 批准号:
    7794272
  • 财政年份:
    2010
  • 资助金额:
    $ 38.2万
  • 项目类别:
Cryo Upgrade of UMB EM Core Facility
UMB EM 核心设施的冷冻升级
  • 批准号:
    7794116
  • 财政年份:
    2010
  • 资助金额:
    $ 38.2万
  • 项目类别:
Biomolecular Mass Spectrometry Facility CORE
生物分子质谱设施CORE
  • 批准号:
    8057633
  • 财政年份:
    2010
  • 资助金额:
    $ 38.2万
  • 项目类别:
Bioreactor Core Facility
生物反应器核心设施
  • 批准号:
    8118207
  • 财政年份:
    2010
  • 资助金额:
    $ 38.2万
  • 项目类别:
Bioreactor Core Facility
生物反应器核心设施
  • 批准号:
    7904820
  • 财政年份:
    2009
  • 资助金额:
    $ 38.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了