The AGATA Spectrometer

AGATA 光谱仪

基本信息

  • 批准号:
    ST/I504924/1
  • 负责人:
  • 金额:
    $ 7.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

AGATA - the Advanced GAmma Tracking Array - will be the world's pre-eminent device for studies of the femtoscale structure of matter. By measuring the properties of gamma rays emitted by atomic nuclei with unprecedented sensitivity, AGATA will provide new insights into nuclear and sub-nuclear behaviour and will address fundamental issues such as the limits of nuclear existence and the origin of the elements in the universe. Recent experimental results have begun to suggest that nuclei far from stability may behave very differently from their near-stable neighbours. For a complete understanding of nuclear structure, we need to understand the behaviour of all atomic nuclei, not just the small subset close to stability. New experimental methods therefore need to be developed, to study nuclei ever further from stability. For example, radioactive-ion beam accelerators are now becoming available. Their use presents a wealth of new challenges; low beam intensities and high background counts will require new, ultra-sensitive experimental techniques. Gamma-ray spectroscopy is one of the foremost techniques for studying nuclear structure. For this reason, many technological advances in gamma-ray detection have been made over the years. In the 1980s, UK nuclear physicists pioneered the development of gamma-ray spectrometers made up of arrays of germanium detectors. A problem with such detectors is that the spectral response is impaired if a gamma ray scatters out of the detector without depositing its full energy. As a remedy, the method of escape suppression is used, whereby the germanium detector is surrounded by a second detector - a suppression shield - which vetoes scattered gamma rays. Although this method significantly improves the quality of the spectra, the shield occupies a valuable fraction of the 4(pi) solid angle, limiting the overall detection efficiency. In the 1990s developments culminated in two large spectrometers: Euroball (Europe) and Gammasphere (USA) each made up of ~100 escape-suppressed germanium detectors. A giant step forward would be made by dispensing with shields, and building a gamma-ray spectrometer solely from germanium detectors. Instead of vetoing, and losing, scattered gamma rays, they could be tracked from one detector to another. This is the underlying principle of AGATA. Although tracking sounds straightforward, in practice it is complex / it is necessary to record the energy and position of every gamma-ray interaction, in order to track a scattered gamma ray from one detector to another, and thereby determine its full energy by event reconstruction. The complexity however pays off as AGATA will have sensitivity over 1000 times better than its predecessors. Gamma-ray tracking is thus at the forefront of nuclear-physics research throughout the world. Tracking is also important in other fields, for example, in nuclear medical imaging where the reconstruction of gamma-ray energies will vastly improve resolution. AGATA will be developed and built by a large European collaboration of physicists from over 12 countries. The UK is a major part of the collaboration, exploiting its many years of leadership in the field, with expertise in several key areas. Ultimately AGATA will consist of 180 detectors. The project will be realized in phases; this request covers the phase from 2008 to 2012, where the aim is to build a quarter of the full array. Initially, a 15-detector sub-array - the AGATA Demonstrator - will be built; although its main purpose is to demonstrate the feasibility of tracking, it will be a powerful device in its own right. AGATA will be continually expanded, and will be operated at three European laboratories before 2012 each with different characteristics: initially at the stable-beam facility at Legnaro in Italy, and later at radioactive-beam facilities at GANIL in France and GSI in Germany. Following on from this grant period, the complete AGATA spectrometer will be built by 2015.
AGATA——先进的伽玛跟踪阵列——将成为世界上用于研究飞尺度物质结构的卓越设备。通过以前所未有的灵敏度测量原子核发射的伽马射线的特性,AGATA 将为核和亚核行为提供新的见解,并将解决核存在的极限和宇宙中元素的起源等基本问题。最近的实验结果开始表明,远离稳定的原子核的行为可能与接近稳定的邻居有很大不同。为了全面了解核结构,我们需要了解所有原子核的行为,而不仅仅是接近稳定的小子集。因此,需要开发新的实验方法,以进一步研究原子核的稳定性。例如,放射性离子束加速器现在已经可用。它们的使用带来了许多新的挑战;低光束强度和高背景计数将需要新的、超灵敏的实验技术。伽马射线光谱是研究核结构的最重要的技术之一。因此,多年来伽马射线探测方面取得了许多技术进步。 20 世纪 80 年代,英国核物理学家率先开发了由锗探测器阵列组成的伽马射线光谱仪。这种探测器的一个问题是,如果伽马射线在没有沉积其全部能量的情况下散射出探测器,则光谱响应会受到损害。作为补救措施,使用了逃逸抑制方法,即锗探测器被第二个探测器(抑制屏蔽)包围,该探测器可以阻止散射的伽马射线。尽管这种方法显着提高了光谱质量,但屏蔽占据了 4(pi) 立体角的重要部分,限制了整体检测效率。 20 世纪 90 年代,两个大型光谱仪的发展达到顶峰:Euroball(欧洲)和 Gammasphere(美国),每个光谱仪均由约 100 个逃逸抑制型锗探测器组成。取消屏蔽并仅用锗探测器建造伽马射线光谱仪将向前迈出一大步。可以将它们从一个探测器跟踪到另一个探测器,而不是否决和丢失散射的伽马射线。这是AGATA 的基本原则。虽然跟踪听起来很简单,但实际上很复杂/有必要记录每次伽马射线相互作用的能量和位置,以便跟踪从一个探测器到另一个探测器的散射伽马射线,从而通过事件重建确定其全部能量。然而,复杂性得到了回报,因为 AGATA 的灵敏度比其前身高出 1000 倍以上。因此,伽马射线跟踪处于全世界核物理研究的前沿。跟踪在其他领域也很重要,例如在核医学成像中,伽马射线能量的重建将大大提高分辨率。 AGATA 将由来自超过 12 个国家的物理学家组成的欧洲大型合作团队开发和构建。英国是此次合作的主要参与者,利用其在该领域多年的领导地位以及在几个关键领域的专业知识。最终 AGATA 将由 180 个探测器组成。该项目将分阶段实施;该请求涵盖2008年至2012年的阶段,目标是建造全阵列的四分之一。最初,将建造一个包含 15 个探测器的子阵列——AGATA 演示器;尽管其主要目的是展示跟踪的可行性,但它本身将是一个强大的设备。 AGATA 将不断扩大,并于 2012 年之前在三个欧洲实验室运行,每个实验室都有不同的特点:最初在意大利莱尼亚罗的稳定束设施,后来在法国的 GANIL 和德国的 GSI 的放射性束设施。在此资助期结束后,完整的 AGATA 光谱仪将于 2015 年建成。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interplay between single-particle and collective excitations in argon isotopes populated by transfer reactions
  • DOI:
    10.1103/physrevc.84.014325
  • 发表时间:
    2011-07
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    S. Szilner;L. Corradi;F. Haas;D. Lebhertz;G. Pollarolo;C. Ur;L. Angus;S. Beghini;M. Bouhelal;R. Chapman;E. Caurier;S. Courtin;E. Farnea;E. Fioretto;A. Gadea;A. Goasduff;D. Jelavić-Malenica;V. Kumar;S. Lunardi;N. Mărginean;P. Mason;D. Mengoni;G. Montagnoli;F. Nowacki;F. Recchia;E. Sahin;M. Salsac;F. Scarlassara;R. Silvestri;J. Smith;N. Soić;A. Stefanini;J. Valiente-Dobon
  • 通讯作者:
    S. Szilner;L. Corradi;F. Haas;D. Lebhertz;G. Pollarolo;C. Ur;L. Angus;S. Beghini;M. Bouhelal;R. Chapman;E. Caurier;S. Courtin;E. Farnea;E. Fioretto;A. Gadea;A. Goasduff;D. Jelavić-Malenica;V. Kumar;S. Lunardi;N. Mărginean;P. Mason;D. Mengoni;G. Montagnoli;F. Nowacki;F. Recchia;E. Sahin;M. Salsac;F. Scarlassara;R. Silvestri;J. Smith;N. Soić;A. Stefanini;J. Valiente-Dobon
Evolution of the Ar isotopic chain: the N=28 shell gap south of 48Ca
Ar同位素链的演化:48Ca以南的N=28壳层间隙
  • DOI:
    10.1016/j.nuclphysa.2010.01.020
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mengoni D
  • 通讯作者:
    Mengoni D
Electromagnetic properties of vibrational bands in 170Er
170Er振动带的电磁特性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Smith其他文献

‘White Men Can’t Jump,’ But Would You Bet on It?
“白人不会跳”,但你敢打赌吗?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deniz Igan;M. Pinheiro;John Smith
  • 通讯作者:
    John Smith
Acoustic impedance measurements-correction for probe geometry mismatch.
声阻抗测量 - 探头几何形状不匹配的校正。
The Telescope Array's Middle Drum Observatory
望远镜阵列的中鼓天文台
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Matthews;John Smith;S. Blake;R. Cady;S. Thomas;D. Rodriguez;C. Jui
  • 通讯作者:
    C. Jui
Cognitive Dissonance and the Overtaking Anomaly: Psychology in the Principal-Agent Relationship
认知失调与超车异常:委托代理关系中的心理学
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Smith
  • 通讯作者:
    John Smith
An Economist and a Psychologist Form a Line: What Can Imperfect Perception of Length Tell Us About Stochastic Choice?
经济学家和心理学家排成一行:关于随机选择,不完美的长度知觉能告诉我们什么?
  • DOI:
    10.2139/ssrn.3566964
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean Duffy;John Smith
  • 通讯作者:
    John Smith

John Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Smith', 18)}}的其他基金

Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000382/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant
University of the West of Scotland Nuclear Physics Group Consolidated Grant
西苏格兰大学核物理组综合拨款
  • 批准号:
    ST/V001124/1
  • 财政年份:
    2021
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant
AGATA: Precision Spectroscopy of Exotic Nuclei
AGATA:奇异核的精密光谱学
  • 批准号:
    ST/T000511/1
  • 财政年份:
    2020
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant
STTR Phase I: Asphalt Rehabilitation Utilizing a 3D Shaped Asphalt Overlay
STTR 第一阶段:利用 3D 形状沥青覆盖层进行沥青修复
  • 批准号:
    1938570
  • 财政年份:
    2019
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Standard Grant
University of the West of Scotland Nuclear Physics Group Consolidated Grant
西苏格兰大学核物理组综合拨款
  • 批准号:
    ST/P005101/1
  • 财政年份:
    2017
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant
SBIR Phase I: Tandem-ABALONE Detector Module
SBIR 第一阶段:串联鲍鱼探测器模块
  • 批准号:
    1722351
  • 财政年份:
    2017
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Standard Grant
University of the West of Scotland Nuclear Physics Group Consolidated Grant
西苏格兰大学核物理组综合拨款
  • 批准号:
    ST/L005808/1
  • 财政年份:
    2014
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant
University of the West of Scotland Nuclear Physics Group Consolidated Grant
西苏格兰大学核物理组综合拨款
  • 批准号:
    ST/J000183/2
  • 财政年份:
    2012
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant
Exploring the limits of nuclear existence for heavy proton-rich nuclei
探索重质子核的核存在极限
  • 批准号:
    ST/G00871X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant
Nuclear Structure, Astrophysics and Reactions (NuSTAR) at FAIR
FAIR 的核结构、天体物理学和反应 (NuSTAR)
  • 批准号:
    ST/G000689/1
  • 财政年份:
    2010
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Research Grant

相似海外基金

X-ray photoelectron spectrometer (XPS)
X射线光电子能谱仪(XPS)
  • 批准号:
    525733742
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
LC-MS/MS system with high-resolution mass spectrometer and nano-UHPLC - 2/2
配备高分辨率质谱仪和纳米 UHPLC 的 LC-MS/MS 系统 - 2/2
  • 批准号:
    527318363
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
300 MHz NMR Spectrometer
300 MHz 核磁共振波谱仪
  • 批准号:
    536629481
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
Micro-Raman and Photoluminescence Spectrometer
显微拉曼和光致发光光谱仪
  • 批准号:
    534959777
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
X-ray absorption spectrometer
X射线吸收光谱仪
  • 批准号:
    537544951
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
EA/Ed: Acquisition of a carbon dioxide and methane Cavity Ringdown Spectrometer for education and research
EA/Ed:购买二氧化碳和甲烷腔衰荡光谱仪用于教育和研究
  • 批准号:
    2329285
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Standard Grant
Mass spectrometer (LC-MS)
质谱仪(LC-MS)
  • 批准号:
    537496341
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
Fast hybrid mass spectrometer for complexome analyses
用于复杂组分析的快速混合质谱仪
  • 批准号:
    543577782
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
High-Resolution Ion Mobility Mass Spectrometer for Complex Mixture Analysis
用于复杂混合物分析的高分辨率离子淌度质谱仪
  • 批准号:
    537609375
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
Ion mobility mass spectrometer
离子淌度质谱仪
  • 批准号:
    531416396
  • 财政年份:
    2024
  • 资助金额:
    $ 7.27万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了