Process Intensification of Biological Methanation (BM) Systems

生物甲烷化 (BM) 系统的过程强化

基本信息

  • 批准号:
    2280623
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

This project seeks to explore the idea of using biological enzymes immobilised on a biochar framework to convert carbon dioxide (CO2) to methanol (CH3OH). Biological enzymes present a powerful and sustainable alternative to inorganic catalysis; however, they also present a challenge. Enzymes must be robust enough to work within adverse environments, such as CO2 exhaust outflows. Free enzymes in solution also create unfeasibly high operational costs due to low recovery rates.One of the most effective ways to solve these issues is through immobilization; unfortunately, many studies are limited by complex methodology and loss of enzyme activity. Biochar has recently emerged as a stable, inert, and economical matrix for enzyme immobilisation that could overcome these limitations. As opposed to being bound onto the matrix - which impacts activity - enzymes are instead held in place on the biochar by surface functional groups. This could create a bio-catalytic system that provides enzyme stability without affecting functionality; offering industries struggling to decarbonise a CO2-capture technology that generates an economic return on the significant investment required to implement capture-based solutions.This study will begin by engineering biochar from sustainable UK-based forestry products to ensure its physiochemistry facilitates optimal enzyme attachment and activity. Then, it will determine the optimal conditions (pH, time, temperature, enzyme and ionic concentration) for enzyme binding. It will then test bio-catalysis of CO2 to methanol in pure CO2 and flue gas. Finally, if the study proof-of-concept is achieved, I hope to conduct lifecycle, technoeconomic and pathways-to-market analyses to determine process sustainability and identify pathways to accelerate technology uptake and adoption.In 2018 alone, methanol production from fossil fuels contributed 211 million tonnes of CO2 emissions into the atmosphere. If proof of concept is achieved; this novel technology could replace the use of fossil fuels in methanol manufacturing, demand for which has reached 98 million tonnes in 2018 and is increasing. It could also create an opportunity for CCUS investment in growing industries struggling to eliminate CO2 emissions, such as the cement and steel industry, which contribute over 9% of global CO2 emissions. Methanol will also continue to be in demand in the future as a source of hydrogen for fuel cell vehicles and for conversion to dimethyl ether - a super clean diesel fuel for transport. This provision of sustainable methanol could assist in transport decarbonisation, transport is currently responsible for 6% of global CO2 output.The leading method for CO2 capture and conversion to methanol is via rare-metal catalysis, which is associated with expense and sustainability concerns. This biocatalytic method will overcome these barriers by utilising biochar as the reaction matrix, to which the enzymes are attached. Biochar and enzymes are renewable, widely available, and affordable, which could result in a lower carbon footprint and a more competitive process. Also, the enzyme-mediated conversion performs optimally at lower temperatures and pressures, making it more energy-efficient.This would be the first study of its kind to use biochar in a multi-enzyme cascade system. It is hoped that proof of the system's concept will incentivise further investigations into enzyme-mediated carbon capture.
该项目旨在探索使用固定在生物炭框架上的生物酶将二氧化碳(CO2)转化为甲醇(CH 3OH)的想法。生物酶为无机催化提供了一种强大且可持续的替代品;然而,它们也带来了挑战。酶必须足够强大,以便在不利的环境中工作,例如CO2废气流出。溶液中的游离酶由于回收率低而造成不可行的高操作成本。解决这些问题的最有效方法之一是通过固定化;不幸的是,许多研究受到复杂方法和酶活性损失的限制。生物炭作为一种稳定、惰性和经济的酶固定化基质,可以克服这些局限性。与被结合到基质上-这会影响活性-相反,酶被表面官能团固定在生物炭上。这可以创造一种生物催化系统,在不影响功能的情况下提供酶的稳定性;为努力脱碳的行业提供二氧化碳捕获技术,为实施基于捕获的解决方案所需的重大投资产生经济回报。这项研究将开始,从可持续的英国林业产品中工程化生物炭,以确保其物理化学促进最佳的酶附着和活性。然后,它将确定酶结合的最佳条件(pH、时间、温度、酶和离子浓度)。然后,它将测试纯CO2和烟道气中CO2到甲醇的生物催化。最后,如果该研究的概念验证得以实现,我希望进行生命周期、技术经济和市场路径分析,以确定工艺的可持续性,并确定加速技术吸收和采用的途径。仅在2018年,化石燃料甲醇生产就向大气排放了2.11亿吨二氧化碳。如果实现概念验证,这项新技术可以取代化石燃料在甲醇制造中的使用,2018年甲醇需求量已达到9800万吨,而且还在增加。它还可以为CCUS投资于正在努力消除二氧化碳排放的新兴行业创造机会,例如水泥和钢铁行业,这些行业占全球二氧化碳排放量的9%以上。甲醇在未来也将继续作为燃料电池汽车的氢源,并转化为二甲醚-一种用于运输的超清洁柴油燃料。这种可持续甲醇的供应可以帮助运输脱碳,目前运输占全球二氧化碳排放量的6%。二氧化碳捕获和转化为甲醇的主要方法是通过稀有金属催化,这与费用和可持续性问题有关。这种生物催化方法将通过利用生物炭作为反应基质来克服这些障碍,酶被附着在该反应基质上。生物炭和酶是可再生的,广泛可用的,负担得起的,这可能导致更低的碳足迹和更具竞争力的过程。此外,酶介导的转化在较低的温度和压力下表现最佳,使其更节能。这将是第一次在多酶级联系统中使用生物炭的研究。希望该系统概念的证明将激励对酶介导的碳捕获的进一步研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Levelling up: Cultured meat bioprocess intensification for scalable commercial production
升级:培养肉生物加工强化以实现可扩展的商业生产
  • 批准号:
    10083870
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Intensification of metallo-enzyme production to unlock sustainable biocatalytic hydrogenation
强化金属酶生产以实现可持续的生物催化氢化
  • 批准号:
    10065700
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis
CDS
  • 批准号:
    2245474
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
COntinental COnvective OrganisatioN and rainfall intensification in a warming world: Improving storm predictions from hours to decades (COCOON)
变暖世界中的大陆对流组织和降雨强度:将风暴预测从几小时提高到几十年(COCOON)
  • 批准号:
    NE/X017419/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Elucidation of dynamics of complex fluid droplet levitated on high temperature surface and their development into process intensification
阐明高温表面悬浮复杂液滴的动力学及其发展过程强化
  • 批准号:
    23K13592
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Uncovering the Role of Land-Atmosphere Feedbacks on Flash Drought Intensification, Severity, and Expansion
合作研究:揭示陆地-大气反馈对突发干旱加剧、严重程度和扩大的作用
  • 批准号:
    2303458
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The Role Of Climate In Agricultural Intensification And Settlement Trends
合作研究:气候在农业集约化和定居趋势中的作用
  • 批准号:
    2414237
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the Role of Land-Atmosphere Feedbacks on Flash Drought Intensification, Severity, and Expansion
合作研究:揭示陆地-大气反馈对突发干旱加剧、严重程度和扩大的作用
  • 批准号:
    2303457
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MICA: Pulmonary Hypertension: intensification and personalisation of combination Rx (PHoenix)
MICA:肺动脉高压:联合 Rx 的强化和个性化 (PHoenix)
  • 批准号:
    MR/W026279/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Transcriptional adaptations driving the intensification of alcohol-seeking in dependent rats undergoing prolonged abstinence
转录适应导致长期戒酒的依赖性大鼠对酒精的渴求加剧
  • 批准号:
    10540014
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了