Machine Learning for Automated Heart Strain and Motion from DENSE
DENSE 的自动心脏应变和运动机器学习
基本信息
- 批准号:2435447
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Aim of the PhD Project:DENSE MRI provides accurate and reproducible myocardial strain, but processing currently relies on extensive manual input.This project will utilize existing data and state-of-the-art machine-learning algorithms to automatically process and segment DENSE data, outputting cardiac geometry as well as pixelwise displacement and strain.Project Description / Background:Recent advances in machine learning and artificial intelligence methods have enabled the development of new tools for the quantitative analysis of cardiac performance in medical imaging examinations. However, applications to patients require implementation and evaluation on clinical scans in specific disease cases. This project will develop new methods for the analysis of DENSE cardiac MRI exams. The resulting software tools will be used in clinical studies performed at the Royal Brompton Hospital.DENSE is the most accurate and best resolution method for non-invasive quantification of strain and motion of heart muscle [1,2]. However, the images currently require complex and time-consuming off-line post-processing to estimate the clinically important strain parameters. In particular, the borders of the heart muscle must be determined (segmentation) and the phase signal unwrapped (due to aliasing). In the presence of noise and artefacts this is difficult and errors need to be corrected manually. The post-acquisition nature of this processing also means that MRI technologists are operating "blind" to a large extent, with little indication of the quality of the strain data and results, which could be used to guide subsequent data acquisition. Recently, advances in machine learning and AI methods have shown promise in automatic evaluation of cardiac MRI data [3, 4]. These do not require manual interaction and can considerably speed up the evaluation process.This project will leverage recent advances in machine learning and artificial intelligence to automatically analyse DENSE data, including segmentation and phase unwrapping, to provide accurate pixel-wise strain information in all regions of the heart. Training will make use of the high performance computing clusters at Imperial and/or KCL. The trained models will be incorporated into online image reconstruction tools, providing immediate measures of myocardial displacement and strain at the scanner.
PHD项目的目的:密集MRI提供准确且可重现的心肌应变,但目前的处理依赖于大量的人工输入。该项目将利用现有数据和最先进的机器学习算法来自动处理和分割密集数据,输出心脏几何形状以及像素化位移和应变。项目描述/背景:机器学习和人工智能方法的最新进展使得在医学成像检查中定量分析心脏性能的新工具的开发成为可能。然而,对患者的应用需要在特定疾病病例的临床扫描上进行实施和评估。该项目将开发分析高密度心脏MRI检查的新方法。得到的软件工具将用于皇家布朗普顿医院进行的临床研究。DENSE是无创量化心肌应变和运动的最准确和最好的分辨率方法[1,2]。然而,目前的图像需要复杂且耗时的离线后处理来估计临床上重要的应变参数。特别是,必须确定(分割)心肌的边界并且展开相位信号(由于混叠)。在存在噪声和伪影的情况下,这是困难的,并且需要手动纠正错误。这种处理的采集后性质还意味着,核磁共振技术人员在很大程度上是在“盲目”操作,几乎没有应变数据和结果的质量迹象,这可以用来指导后续的数据采集。最近,机器学习和人工智能方法的进步在心脏MRI数据的自动评估方面显示出了希望[3,4]。该项目将利用机器学习和人工智能的最新进展来自动分析密集数据,包括分割和相位展开,以提供心脏所有区域的准确像素级应变信息。培训将利用Imperial和/或KCL的高性能计算集群。经过训练的模型将被整合到在线图像重建工具中,提供扫描仪上心肌位移和应变的即时测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Automated analysis of volcano imagery with machine learning techniques
利用机器学习技术自动分析火山图像
- 批准号:
2908452 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
- 批准号:
10064479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Decoding glacial landscapes using automated geomorphological mapping and machine learning
使用自动地貌测绘和机器学习解码冰川景观
- 批准号:
2863174 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Automated Flow Synthesis: In-Line Reaction Monitoring and Machine Learning for the Optimisation of Continuous Flow Photocatalytic Reactions
自动流动合成:用于优化连续流动光催化反应的在线反应监测和机器学习
- 批准号:
2894726 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Automated Sonographic Detection of Pulmonary Embolism Using Machine Learning Algorithm
使用机器学习算法自动超声检测肺栓塞
- 批准号:
10741242 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studies in machine learning and robotics for automated construction
用于自动化施工的机器学习和机器人技术研究
- 批准号:
2891648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
- 批准号:
10662053 - 财政年份:2023
- 资助金额:
-- - 项目类别: