AI based diagnosis and support system for cartilage lesion detection on knee MRIs and automated rehabilitation assessment with quantitative biomarkers
基于人工智能的诊断和支持系统,用于膝关节 MRI 软骨病变检测和定量生物标志物自动康复评估
基本信息
- 批准号:2565765
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Identifying cartilage lesions in patients undergoing MRI of the knee joint has many important implications in routine clinical applications. The MRI is commonly used to assess knee joint, especially cartilage lesions including cartilage softening, fissuring, diffuse thinning due to cartilage degeneration and acute cartilage injury. However, the diagnostic performance depends on the experience of operators and reader, and the different level of expertise also lead to the inter-observer variability in the clinical applications. Moreover, it is very challenging to quantifying these image based biomarkers from MRI due to the variations of their appearances. Therefore, developing a computer based methods for automated detecting cartilage lesions, qualifying and assessing the biomarkers following e.g. knee surgery on MRI would increase the diagnostic accuracy (performance) that would be beneficial to the patients while reducing the inter-observer variability and errors caused by human interpretation. In addition, the designed smart sensors equipped on the patients could provide dimensional information that help assessing the effectiveness of the treatment.This research proposal is anchored on a recent established collaboration between the Lincoln County Hospital, Prof Lee who is the Director of Research at the ULHT, and the Laboratory of Vision Engineering, School of Computer Science, University of Lincoln. The research aims to develop a fully automated AI based system to detect cartilage lesions and quantify the biomarkers within the knee joint on MRIs. Since the Artificial Intelligence (AI) has shown promising performance in some applications in the industry and has a lot of potentials to apply on a wide variety of applications in medical image analysis. This study will focus on applying the AI techniques on this application to deliver a novel AI diagnosis and treatment (recovery) assessment system of which the efficiency, accuracy and robustness will be validated in the clinical trial.To achieve this goal, the study is consisted of four phases:1. Developing the deep learning based anatomic structure (cartilage, bone, muscles) segmentation algorithm. Accurate segmentation is a key step for computer-based surgical planning of interventions affecting the knee.2. 3D Surface reconstruction /mapping of the segmented knee structures3. Automatically lesion detection by assessing structural anomalies within the segmented tissues from MRIs for diagnosis and treatment planning.4. Quantifying the knee joint degeneration using quantitative image-based biomarkers and textual data collected from smart sensors to evaluate the efficiency of treatment.In these four phases, the accurate segmentation in the phase 1 is a critical task, as it is a prerequisite stage for all the other phases.The outputs of the phase 2 and 3 would be beneficial to the diagnosis and treatment planning, and could reduce the errors and increase efficiency of the clinical work flow, due to its fully automated nature. Moreover, in the phase 4 we expect to propose a novel biomarker to evaluate the treatment and the stages of recovery based on imaging and wearable smart sensor data.
在常规的临床应用中,识别接受膝关节MRI检查的患者的软骨病变具有许多重要意义。MRI通常用于评估膝关节,特别是软骨病变,包括软骨软化、断裂、软骨退变引起的弥漫性变薄和急性软骨损伤。然而,诊断性能依赖于操作者和读者的经验,而不同的专业水平也导致了临床应用中观察者之间的差异。此外,由于这些基于图像的生物标记物的外观变化,从MRI中对其进行量化是非常具有挑战性的。因此,开发一种基于计算机的方法来自动检测软骨损伤,在MRI上对膝关节手术后的生物标记物进行鉴定和评估,将提高诊断的准确性(性能),这将有利于患者,同时减少观察者之间的可变性和人为解释造成的错误。此外,安装在患者身上的智能传感器可以提供空间信息,帮助评估治疗的有效性。这项研究提案建立在林肯县医院、ULHT研究主任李教授和林肯大学计算机科学学院视觉工程实验室最近建立的合作基础上。这项研究的目的是开发一个全自动的基于人工智能的系统来检测软骨损伤,并在核磁共振成像上量化膝关节内的生物标记物。由于人工智能(AI)在行业中的一些应用中表现出了良好的性能,并在医学图像分析中具有广泛的应用潜力。本研究将致力于将人工智能技术应用于这一领域,提出一种新型的人工智能诊疗(康复)评估系统,该系统的效率、准确性和稳健性将在临床试验中得到验证。准确的分割是以计算机为基础的手术计划的关键一步,以影响膝关节的干预。分段膝关节结构的三维表面重建/映射3。通过评估来自磁共振成像的分割组织内的结构异常来自动检测病变,以用于诊断和治疗计划。使用基于图像的定量生物标志物和从智能传感器收集的文本数据来量化膝关节退变,以评估治疗的效率。在这四个阶段中,第一阶段的准确分割是关键任务,因为它是所有其他阶段的先决条件。第二阶段和第三阶段的输出将有利于诊断和治疗计划,并可以减少错误和提高临床工作流程的效率,因为其完全自动化的性质。此外,在第四阶段,我们希望提出一种新的生物标记物来评估治疗和康复阶段,基于成像和可穿戴智能传感器数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
AI-based Fall-Risk Assessment during Daily Activities in Post Stroke Survivors using Smartphones
使用智能手机对中风后幸存者进行日常活动期间基于人工智能的跌倒风险评估
- 批准号:
10580558 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
- 批准号:
10760401 - 财政年份:2023
- 资助金额:
-- - 项目类别:
AI-based diagnosis for improving classification of bone and soft tissue tumours across the UK
基于人工智能的诊断可改善英国骨和软组织肿瘤的分类
- 批准号:
EP/Y020030/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Multimodal AI-based Diagnosis of Autism Spectrum Disorder (ASD)
基于多模态人工智能的自闭症谱系障碍 (ASD) 诊断
- 批准号:
2883676 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Generative-AI based system for accurate prediction of deceased donor liver-transplant (DDLT) outcome and viability
基于生成人工智能的系统,可准确预测已故供体肝移植 (DDLT) 的结果和生存能力
- 批准号:
10654166 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ECG-AI Based Prediction and Phenotyping of Heart Failure with Preserved Ejection Fraction
基于 ECG-AI 的射血分数保留的心力衰竭预测和表型分析
- 批准号:
10717312 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
- 批准号:
10545691 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of a AI-based medical device program for early diagnosis of postoperative recurrence of colorectal cancer
开发基于人工智能的结直肠癌术后复发早期诊断医疗器械程序
- 批准号:
22K15832 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
- 批准号:
10742360 - 财政年份:2022
- 资助金额:
-- - 项目类别: