Precise Perturbative Predictions for the Higgs Sector

希格斯粒子的精确扰动预测

基本信息

  • 批准号:
    2569639
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

After the discovery of the Higgs boson, the Large Hadron Collider (LHC) and its upgrade to high luminosity (HL-LHC) have entered a new era of precision high-energy physics. This precision is the key to making new discoveries, as even slight deviations from the current model will provide important hints to as yet unknown particles and interactions. However, with experimental precision expected to outstrip current theoretical uncertainties, the success of this program will rely on our ability to overcome the immense challenges involved in improving the accuracy of our theoretical predictions. It requires the calculation of higher-order quantum corrections which are beyond the scope of current methods. This complexity and the appearance of new mathematical structures force us to rethink our strategy.The first part of this PhD project will be dedicated to developing new methods to enable the efficient calculation of multi-loop predictions. One of the keys to modern multi-loop calculations lies in the fact that there is a freedom in the choice of Feynman integrals that ultimately need to be calculated. Part of this freedom can be accessed through the use of "integration-by-parts identities (IBPs)" which provide a set of linear relations between the integrals appearing in the amplitude. Much of the recent progress in the analytic evaluation of integrals was made possible exactly because of this freedom, through the choice of a particular set of "canonical" integrals. In fact, the choice of integrals used to express the amplitude plays a much deeper role in loop calculations; it allows some of the physical properties of the amplitude to be made manifest. For example, spurious singularities in the amplitude can be avoided through a judicious choice of integrals. Concretely, as part of this project, new methods for expressing amplitudes in a finite basis of master integrals free of spurious singularities will be investigated. There are many exciting ideas in this area yet to be fully explored: enforcing that integrals have the correct behaviour near to threshold, exploiting knowledge of the IR/UV singularities of the amplitude, and using knowledge of the high-energy and small mass limits of the amplitude. As an important tool for this project, a more formal, analytic, understanding of this topic may be obtained through the use of so-called "intersection theory".The second part of the PhD project will apply the new methods to compute higher-order perturbative QCD/EW corrections to processes of relevance for the Higgs Sector at the LHC/HL-LHC and anticipated future colliders. In this context, the 2-loop EW corrections to several loop-induced Higgs channels are currently unknown and would be prime candidates for study using the developed techniques. For example, the pp -> HH process is directly sensitive to the Higgs boson self-couplings and enables experimental access to the structure of the Higgs potential. The pp -> H + jet process is one of the key avenues for exploring the Higgs sector at the LHC above the top quark threshold. Currently, the best predictions for these processes are produced using a hybrid approach: the N3LO or NNLO QCD corrections in the heavy top-quark limit are re-weighted by the full NLO QCD prediction. Naively, we may expect that the currently unknown NLO EW effects could be of a similar size to these NNLO QCD corrections in some regions of phase-space and that they will grow at high-energy, the most interesting region in which to search for new physics. In fact, NLO EW corrections to the simpler two-to-one process pp -> H have been known for some time as a function of the Higgs boson mass, they shift the total cross-section by 5%. The computation of the currently unknown 2-loop EW corrections to a process relevant for studying the Higgs sector is a goal of this PhD project.
随着希格斯玻色子的发现,大型强子对撞机(LHC)及其向高光度(HL-LHC)的升级,进入了精确高能物理的新时代。这种精确度是获得新发现的关键,因为即使与当前模型稍有偏差,也会为未知的粒子和相互作用提供重要线索。然而,由于实验精度有望超过目前理论的不确定性,该计划的成功将依赖于我们克服提高理论预测准确性所涉及的巨大挑战的能力。它需要计算高阶量子修正,这超出了当前方法的范围。这种复杂性和新的数学结构的出现迫使我们重新思考我们的策略。这个博士项目的第一部分将致力于开发新的方法来实现多环路预测的有效计算。现代多循环计算的关键之一在于,最终需要计算的费曼积分的选择是自由的。这种自由可以通过使用“分部积分恒等式”(IBPs)来获得,它提供了出现在振幅中的积分之间的一组线性关系。正是由于这种自由,通过选择一组特定的“正则”积分,最近在积分解析计算方面取得的许多进展才成为可能。事实上,用于表示振幅的积分的选择在环路计算中起着更深刻的作用;它使振幅的一些物理性质得以显现。例如,可以通过明智地选择积分来避免振幅的伪奇点。具体地说,作为该项目的一部分,将研究在无伪奇点的主积分有限基中表示振幅的新方法。在这个领域有许多令人兴奋的想法有待充分探索:强制积分在阈值附近具有正确的行为,利用振幅的IR/UV奇点的知识,以及利用振幅的高能和小质量极限的知识。作为这个项目的一个重要工具,通过使用所谓的“交集理论”,可以对这个主题有一个更正式、更分析的理解。博士项目的第二部分将应用新方法来计算高阶微扰QCD/EW修正,以与LHC/HL-LHC和预期的未来对撞机的希格斯扇区相关的过程。在这种情况下,对几个环诱导的希格斯通道的2环电子战修正目前尚不清楚,并且将是使用开发的技术进行研究的主要候选者。例如,pp -> HH过程对希格斯玻色子的自耦合直接敏感,并使实验能够接近希格斯势的结构。pp -> H +喷射过程是探索大型强子对撞机在顶夸克阈值以上的希格斯扇区的关键途径之一。目前,对这些过程的最佳预测是使用混合方法产生的:重顶夸克极限中的N3LO或NNLO QCD修正被完整的NLO QCD预测重新加权。我们可能会天真地期望,目前未知的NLO EW效应在相空间的某些区域可能与这些NLO QCD修正具有相似的大小,并且它们将在高能区域增长,这是寻找新物理的最有趣的区域。事实上,NLO - EW对更简单的二比一过程pp -> H的修正已经被认为是希格斯玻色子质量的函数,它们将总横截面移动了5%。该博士项目的目标是计算目前未知的与研究希格斯扇区相关的双环电子束修正过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
  • 批准号:
    2401388
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative constraints on strongly interacting systems
强相互作用系统的非微扰约束
  • 批准号:
    2889469
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
  • 批准号:
    2310243
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
  • 批准号:
    2310283
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
  • 批准号:
    23K03382
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
  • 批准号:
    22KJ2096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Non-Perturbative Interfacial Waves
非微扰界面波
  • 批准号:
    2306243
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Resurgence and non-perturbative phenomena in strongly coupled field theories
强耦合场论中的复兴和非微扰现象
  • 批准号:
    2890362
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了