Physical-chemical Aspects Of Cell And Tissue Excitabilit
细胞和组织兴奋性的物理化学方面
基本信息
- 批准号:6991175
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Excitability of cells and tissues is an essential physiological function that allows organisms to sense their environment and respond to it. The primary goal of this work is to explain key physical-chemical features of cell and tissue excitability, many aspects of which are still poorly understood. Widely accepted theories of nerve excitability do not explain several anomalous phenomena that we have shown are necessary for excitation to occur. These include reversible volume, temperature, and optical changes of the superficial protoplasmic layer of nerve axons, which coincide with the arrival of the action potential waveform. We have obtained further evidence that these physical changes accompany a phase transition that occurs in nerve cells, fibers, and synapses caused by the exchange of divalent cations like calcium with monovalent cations like sodium and potassium. Our previous experiments with perfused axons clearly implicate divalent/monovalent cation exchange as a mechanism by which nerve fibers can be excited in an "all or none" manner. To understand the physical chemical basis of these temperature and volumetric changes, particularly how divalent/monovalent cation exchange can induce such changes in biomolecular assemblies, we are studying these processes in synthetic "biomimetic" anionic polymer gels under nearly physiological conditions. An advantage of studying the behavior of these gel model systems is that their structure, composition, and the interactions among their components can be carefully controlled, unlike in living tissue. In particular, in synthetic polyacrylate gels, Ferenc Horkay has observed that minute changes in the concentration of divalent cations in the surrounding liquid can induce significant changes in chain stiffness in the gel, even if ion binding is weak and completely reversible. Various physical chemical and polymer physics-based techniques, including neutron, x-ray and light scattering, as well as osmotic swelling, and mechanical loading provide complementary information with which to study these biologically relevant phenomena over a wide range of length scales. These basic studies are leading to a deeper understanding of the physical mechanisms underlying nerve excitation.
We are also investigating biophysical aspects of stimulation by electromagnetic induction (magnetic stimulation) in the central and peripheral nervous systems. Pedro Miranda has performed detailed calculations using a finite element method (FEM), to predict the electric field and current density distributions induced in the brain during magnetic stimulation. Previously, we found that both tissue heterogeneity and anisotropy of the electrical conductivity contribute significantly to distort the induced fields, and even to create excitatory or inhibitory "hot spots" in some regions. These phenomena could have significant clinical consequences both in interpreting or inferring the region or locus of excitation and in determining the source of nerve excitation. More recently, we have focussed on possible physical mechanisms of cortical excitation.
细胞和组织的兴奋性是一种重要的生理功能,使生物体能够感知其环境并对其做出反应。这项工作的主要目标是解释细胞和组织兴奋性的关键物理化学特征,其中许多方面仍然知之甚少。被广泛接受的神经兴奋性理论并不能解释我们已经证明的兴奋发生所必需的几种异常现象。这些包括可逆的体积,温度和神经轴突的表面原生质层的光学变化,这与动作电位波形的到来相一致。我们已经获得了进一步的证据,这些物理变化伴随着发生在神经细胞,纤维和突触中的相变,这是由二价阳离子(如钙)与一价阳离子(如钠和钾)的交换引起的。我们先前的灌注轴突实验清楚地表明,二价/单价阳离子交换是一种机制,通过这种机制,神经纤维可以以“全或无”的方式被激发。为了了解这些温度和体积变化的物理化学基础,特别是二价/单价阳离子交换如何在生物分子组装中诱导这种变化,我们正在研究这些过程中合成的“仿生”阴离子聚合物凝胶在接近生理条件下。研究这些凝胶模型系统的行为的一个优点是,它们的结构、组成和它们的组分之间的相互作用可以被仔细控制,这与活组织不同。特别是在合成聚丙烯酸酯凝胶中,Ferenc Horkay观察到周围液体中二价阳离子浓度的微小变化可以引起凝胶中链刚度的显著变化,即使离子结合是弱的并且完全可逆。各种物理化学和聚合物物理为基础的技术,包括中子,X射线和光散射,以及渗透溶胀,和机械负荷提供了补充信息,研究这些生物学相关的现象在很宽的范围内的长度尺度。这些基础研究正在导致对神经兴奋背后的物理机制的更深入理解。
我们还在研究中枢和外周神经系统中电磁感应(磁刺激)刺激的生物物理学方面。佩德罗·米兰达(Pedro Miranda)使用有限元法(FEM)进行了详细计算,以预测磁刺激期间大脑中感应的电场和电流密度分布。以前,我们发现,组织的异质性和各向异性的电导率有助于显着扭曲的诱导场,甚至在某些地区创建兴奋性或抑制性的“热点”。这些现象可能在解释或推断兴奋区域或部位以及确定神经兴奋来源方面具有重要的临床后果。最近,我们集中在可能的物理机制皮层兴奋。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ICHIJI TASAKI其他文献
ICHIJI TASAKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ICHIJI TASAKI', 18)}}的其他基金
MECHANICAL, THERMAL, AND OPTICAL SIGNS OF EXCITATION IN THE NERVOUS SYSTEM
神经系统兴奋的机械、热和光学迹象
- 批准号:
3880930 - 财政年份:
- 资助金额:
-- - 项目类别:
PHYSICAL-CHEMICAL BASIS OF CELL AND TISSUE EXCITABILITY
细胞和组织兴奋性的物理化学基础
- 批准号:
6290171 - 财政年份:
- 资助金额:
-- - 项目类别:
Physical-chemical Aspects Of Cell And Tissue Excitability
细胞和组织兴奋性的物理化学方面
- 批准号:
7734686 - 财政年份:
- 资助金额:
-- - 项目类别:
Physical-chemical Aspects Of Cell And Tissue Excitabilit
细胞和组织兴奋性的物理化学方面
- 批准号:
7333679 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Early mechanisms mediating the organization of the axon initial segment impact the formation of axo-axonic synapses
介导轴突初始段组织的早期机制影响轴突突触的形成
- 批准号:
10291333 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Disruption of CS/KSPG-Mediated Neuronal Outgrowth Inhibition
CS/KSPG 介导的神经元生长抑制的破坏
- 批准号:
9979536 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10677649 - 财政年份:2020
- 资助金额:
-- - 项目类别:
The roles and functions of olfactory transduction channels in the odorant response
嗅觉转导通道在气味反应中的作用和功能
- 批准号:
10187543 - 财政年份:2018
- 资助金额:
-- - 项目类别:
The roles and functions of olfactory transduction channels in the odorant response
嗅觉转导通道在气味反应中的作用和功能
- 批准号:
10424534 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Role of Sodium Channel SCN1B in Inherited Epilepsy
钠通道 SCN1B 在遗传性癫痫中的作用
- 批准号:
9147046 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Serous Cell Secretion and Cystic Fibrosis Lung Disease
浆液细胞分泌与囊性纤维化肺病
- 批准号:
7992506 - 财政年份:2010
- 资助金额:
-- - 项目类别: