Machine learning and translational approaches to personalised care for women with gestational diabetes
机器学习和转化方法为妊娠期糖尿病女性提供个性化护理
基本信息
- 批准号:2756589
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Gestational diabetes mellitus (GDM), glucose intolerance with first onset or recognition during pregnancy, has a global prevalence of 14.0%, making it one of the most common disorders of pregnancy. With increasing obesity and maternal age worldwide, the incidence of GDM is likely to increase, causing a strain on health systems.Gestational diabetes can have adverse short-term consequences on both the mother and the fetus. Women with GDM are at a higher risk of experiencing pregnancy complications and adverse neonatal outcomes such as caesarian section (C-section), preterm delivery, macrosomia, large for gestational age babies, neonatal respiratory distress syndrome, neonatal jaundice, and admission to a neonatal ICU. Although GDM usually subsides after birth, it may lead to long-term consequences for both the mother and the child. The odds of developing type 2 diabetes (T2DM) are substantially higher for women with GDM than without. Additionally, women with GDM are at a significantly higher risk of hypertension, obesity, and cardiovascular morbidity. Children exposed to GDM also have a higher risk of obesity, cardiovascular morbidity and glucose intolerance compared to unexposed children.While appropriate detection, treatment and follow-up reduce the complications associated with GDM, they also place a significant burden on overwhelmed health systems as it is unclear which women are at risk. Risk stratification is important to effectively allocate resources and direct secondary prevention towards at risk populations, especially with the increasing prevalence of GDM. While models have been developed to identify which women are at risk of developing GDM, few have focused on identifying which women with GDM are at risk of experiencing short or long-term adverse outcomes. Data-driven machine learning models have the potential to personalise GDM management and treatment, allowing clinicians to move away from a one-size-fits-all approach. This project intends to leverage the power of large datasets and machine learning methods to develop prediction models capable of stratifying women with GDM based on their risk of developing short and long-term adverse outcomes of GDM. The overarching aim of the project is to develop and validate data-driven models to stratify women with GDM based on risk of adverse outcomes during pregnancy, at birth, and after pregnancy using the GDm-health tagged glucose dataset and electronic health records. Prior to developing risk stratification models, our first step is to conduct a systematic literature review. The search strategy will be guided by the main objective to understand the current models available to predict poor individual outcomes in women with GDM. The next step would be to consolidate the clinical datasets and explore their limitations. Following the extraction and selection of features and outcomes, we will explore different models ranging from classical statistical models to more elaborate machine learning methods. In parallel, I will work with the regulatory, legal, and business development teams at EMIS Health (industry partner) to learn about how to translate a product developed in an academic setting to commercial markets.
妊娠期糖尿病(GDM)是妊娠期首次发病或确诊的葡萄糖耐受不良,全球患病率为14.0%,是妊娠期最常见的疾病之一。随着世界范围内肥胖和孕产妇年龄的增加,GDM的发病率可能会增加,对卫生系统造成压力。妊娠期糖尿病会对母亲和胎儿造成短期的不良后果。患有GDM的妇女发生妊娠并发症和不良新生儿结局的风险更高,如剖腹产、早产、巨大儿、胎龄大的婴儿、新生儿呼吸窘迫综合征、新生儿黄疸和入住新生儿重症监护病房。虽然GDM通常在出生后消退,但它可能会对母亲和孩子造成长期后果。患有GDM的女性患2型糖尿病(T2DM)的几率明显高于没有GDM的女性。此外,患有GDM的女性患高血压、肥胖和心血管疾病的风险明显更高。与未暴露于GDM的儿童相比,暴露于GDM的儿童也有更高的肥胖、心血管疾病和葡萄糖耐受不良的风险。虽然适当的发现、治疗和随访可减少与GDM相关的并发症,但它们也给不堪重负的卫生系统带来沉重负担,因为尚不清楚哪些妇女面临风险。风险分层对于有效分配资源和针对高危人群的二级预防非常重要,特别是随着GDM患病率的增加。虽然已经建立了模型来确定哪些女性有患GDM的风险,但很少有人关注于确定哪些患有GDM的女性有经历短期或长期不良后果的风险。数据驱动的机器学习模型具有个性化GDM管理和治疗的潜力,使临床医生能够摆脱一刀切的方法。该项目旨在利用大型数据集和机器学习方法的力量,开发能够根据GDM短期和长期不良后果风险对GDM女性进行分层的预测模型。该项目的总体目标是开发和验证数据驱动模型,利用GDM健康标记葡萄糖数据集和电子健康记录,根据妊娠、分娩和妊娠后不良后果的风险对GDM妇女进行分层。在建立风险分层模型之前,我们的第一步是进行系统的文献综述。搜索策略的主要目标是了解当前可用于预测GDM女性个体预后不良的模型。下一步将是整合临床数据集并探索其局限性。在特征和结果的提取和选择之后,我们将探索不同的模型,从经典的统计模型到更复杂的机器学习方法。同时,我将与EMIS Health(行业合作伙伴)的监管、法律和业务开发团队合作,了解如何将学术环境中开发的产品转化为商业市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Machine Learning Risk Prediction of Kidney Disease After Extremely Preterm Birth
机器学习对极早产后肾脏疾病的风险预测
- 批准号:
10589356 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using machine learning to accelerate our understanding of risks for early substance use among child-welfare and community youth
利用机器学习加速我们对儿童福利和社区青少年早期药物使用风险的了解
- 批准号:
10734004 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Machine Learning Approaches for Behavioral Phenotyping of Humanized Knock-in Models of Alzheimer's Disease
用于阿尔茨海默病人源化敲入模型行为表型的机器学习方法
- 批准号:
10741685 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Machine learning drives translational research from drug interactions to pharmacogenetics
机器学习推动从药物相互作用到药物遗传学的转化研究
- 批准号:
10608598 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Uncovering therapeutic-associated biomarkers via machine learning and feature engineering approaches
通过机器学习和特征工程方法发现治疗相关的生物标志物
- 批准号:
10564098 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Machine learning methods to assess risk for prenatal and neonatal iron deficiency anemia from maternal stress exposure
机器学习方法评估孕产妇压力暴露导致产前和新生儿缺铁性贫血的风险
- 批准号:
10505909 - 财政年份:2022
- 资助金额:
-- - 项目类别: