Developing methods for inferring regulatory mechanisms from intact systems: a neisseria case study
开发从完整系统推断调控机制的方法:奈瑟菌案例研究
基本信息
- 批准号:BB/G001863/1
- 负责人:
- 金额:$ 41.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The behaviour of biological systems is controlled and coordinated through a network of 'regulators' and other intracellular interactions that control the expression of the genes within the cell. In bacteria the production of the messenger RNA and the production of proteins are closely linked, and much of the way in which a cell's behaviour is controlled is done at the level of transcription. Transcription can be measured for all of the genes in a cell simultaneously, using microarrays, and this gives a relatively direct read-out of the way in which many aspects of the cell's behaviour are being controlled. This method gives a 'snap shot' of the transcribed genes, and when the observations from many snap shots are combined, the way in which the cell controls its functions can be progressively pieced together, much as the meaning of a movie can be pieced together from the combination of multiple 'frames'. Finding ways to use this information to make testable models that can be used to dissect these central processes that control biological systems is a critical component of systems biology and understanding how biological systems work at a fundamental and 'whole cell' level. If causal relationship and key interactions controlling a cell's behaviour can be determined based upon this type of 'observational' information, then this means that these systems can be addressed without the (frequently impossible, impractical, or unaffordable) need to address each gene individually. Many genes are required for a cell to survive. Other genes are not required for life, but the resulting cell does not function 'normally' in several ways when a normal component has been removed / and it is very difficult to tell which effects are directly or indirectly due to the effects of a gene / gene product. To understand how cellular systems work, we propose that we need ways to analyze and use the information from 'intact / unbroken' biological systems. In this proposal we will make use of one of the largest collections of 'transcript' data, and augment this with information specifically designed to assist modeling the ways in which the cell is controlled. The effectiveness of this modeling will be tested, and the models will be augmented and refined by addressing the key genes by making mutants and testing to what extent they behave according to the model predictions. In this way, we will develop a generally applicable approach that can be applied generally, without the need for expensive, time consuming, and potentially misleading mutant generation in the future.
生物系统的行为是通过“调节器”网络和其他控制细胞内基因表达的细胞内相互作用来控制和协调的。在细菌中,信使RNA的产生和蛋白质的产生密切相关,细胞行为的大部分控制方式是在转录水平上完成的。使用微阵列可以同时测量细胞中所有基因的转录,这可以相对直接地读出细胞行为的许多方面的控制方式。这种方法给出了转录基因的“快照”,当将许多快照的观察结果组合起来时,细胞控制其功能的方式可以逐步拼凑在一起,就像电影的含义可以通过多个“帧”的组合拼凑在一起一样。找到使用这些信息来制作可测试模型的方法,这些模型可用于剖析控制生物系统的这些中央过程,是系统生物学的重要组成部分,并了解生物系统如何在基本和“全细胞”水平上工作。如果控制细胞行为的因果关系和关键相互作用可以根据这种类型的“观察”信息来确定,那么这意味着可以解决这些系统,而无需(通常不可能、不切实际或负担不起)单独解决每个基因。细胞的生存需要许多基因。其他基因不是生命所必需的,但当正常成分被去除时,所得细胞在多种方面无法“正常”发挥作用,并且很难判断哪些影响是直接或间接归因于基因/基因产物的影响。为了了解细胞系统如何工作,我们建议我们需要一些方法来分析和使用来自“完整/完整”生物系统的信息。在这个提案中,我们将利用最大的“转录”数据集合之一,并用专门设计的信息来增强它,以帮助对细胞的控制方式进行建模。该模型的有效性将得到测试,并且通过制造突变体并测试它们根据模型预测的行为程度来处理关键基因,从而增强和完善模型。通过这种方式,我们将开发出一种可以普遍应用的普遍适用的方法,而无需在未来进行昂贵、耗时且可能误导性的突变体生成。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximizing the information content of experiments in systems biology.
- DOI:10.1371/journal.pcbi.1002888
- 发表时间:2013
- 期刊:
- 影响因子:4.3
- 作者:Liepe J;Filippi S;Komorowski M;Stumpf MP
- 通讯作者:Stumpf MP
Balancing the robustness and predictive performance of biomarkers.
- DOI:10.1089/cmb.2013.0018
- 发表时间:2013-12
- 期刊:
- 影响因子:0
- 作者:Kirk P;Witkover A;Bangham CR;Richardson S;Lewin AM;Stumpf MP
- 通讯作者:Stumpf MP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Stumpf其他文献
Learning qualitative and quantitative reasoning in a microworld for elastic impacts
在微观世界中学习定性和定量推理以获得弹性影响
- DOI:
10.1007/bf03173135 - 发表时间:
1990 - 期刊:
- 影响因子:3
- 作者:
R. Ploetzner;H. Spada;Michael Stumpf;K. Opwis - 通讯作者:
K. Opwis
Closing the gap: endoscopic treatment of esophageal anastomotic leakage—a retrospective cohort study
- DOI:
10.1007/s00464-025-11904-0 - 发表时间:
2025-07-14 - 期刊:
- 影响因子:2.700
- 作者:
Myriam W. Heilani;Daniel Teubner;Thomas Haist;Mate Knabe;Patrizia Malkomes;Florian Alexander Michael;Michael Stumpf;Stefan Zeuzem;Wolf Otto Bechstein;Mireen Friedrich-Rust;Georg Dultz - 通讯作者:
Georg Dultz
Michael Stumpf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Stumpf', 18)}}的其他基金
Next generation approaches to connect models and quantitative data
连接模型和定量数据的下一代方法
- 批准号:
BB/P028306/1 - 财政年份:2018
- 资助金额:
$ 41.03万 - 项目类别:
Research Grant
Statistical modelling of in vivo immune response dynamics in zebrafish to multiple stimuli
斑马鱼对多种刺激的体内免疫反应动态的统计模型
- 批准号:
BB/K017284/1 - 财政年份:2013
- 资助金额:
$ 41.03万 - 项目类别:
Research Grant
MSc in Bioinformatics and Theoretical Systems Biology
生物信息学和理论系统生物学硕士
- 批准号:
BB/H021035/1 - 财政年份:2010
- 资助金额:
$ 41.03万 - 项目类别:
Training Grant
Development of a high-throughput quantitative immunofluorescence method and stochastic modeling of signalling networks
开发高通量定量免疫荧光方法和信号网络随机建模
- 批准号:
BB/G530268/1 - 财政年份:2009
- 资助金额:
$ 41.03万 - 项目类别:
Research Grant
Inference-based Modelling in Population and Systems Biology
群体和系统生物学中基于推理的建模
- 批准号:
BB/G007934/1 - 财政年份:2009
- 资助金额:
$ 41.03万 - 项目类别:
Research Grant
Systems approaches to biological research training grant
生物研究培训补助金的系统方法
- 批准号:
BB/F52902X/1 - 财政年份:2008
- 资助金额:
$ 41.03万 - 项目类别:
Training Grant
A rational in-silico and experimental approach to mapping interactomes applied to Candida glabrata
一种合理的计算机模拟和实验方法来绘制应用于光滑念珠菌的相互作用组图
- 批准号:
BB/F013566/1 - 财政年份:2008
- 资助金额:
$ 41.03万 - 项目类别:
Research Grant
Predicting properties of biological networks from noisy and incomplete data
从嘈杂和不完整的数据预测生物网络的特性
- 批准号:
BB/E01612X/1 - 财政年份:2007
- 资助金额:
$ 41.03万 - 项目类别:
Research Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Inferring Kinase Activity from Tumor Phosphoproteomic Data
从肿瘤磷酸化蛋白质组数据推断激酶活性
- 批准号:
10743051 - 财政年份:2023
- 资助金额:
$ 41.03万 - 项目类别:
Methods for inferring and analyzing gene regulatory networks using single-cell multiomics and spatial genomics data
使用单细胞多组学和空间基因组学数据推断和分析基因调控网络的方法
- 批准号:
10712174 - 财政年份:2023
- 资助金额:
$ 41.03万 - 项目类别:
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
- 批准号:
10638631 - 财政年份:2023
- 资助金额:
$ 41.03万 - 项目类别:
Statistical Methods for Inferring Gene-Phenotype Associations Using Omic Data from Gene Knockout and Human Phenotype Studies
使用基因敲除和人类表型研究的组学数据推断基因表型关联的统计方法
- 批准号:
10733165 - 财政年份:2023
- 资助金额:
$ 41.03万 - 项目类别:
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10679088 - 财政年份:2022
- 资助金额:
$ 41.03万 - 项目类别:
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10665219 - 财政年份:2022
- 资助金额:
$ 41.03万 - 项目类别:
Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements
从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络
- 批准号:
10544286 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别:
Evolution-guided machine learning for inferring natural selection
用于推断自然选择的进化引导机器学习
- 批准号:
10641846 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别:
Inferring cell state tumor microenvironment maps by integrating single-cell and spatial transcriptomics
通过整合单细胞和空间转录组学推断细胞状态肿瘤微环境图
- 批准号:
10478987 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别:
Evolution-guided machine learning for inferring natural selection
用于推断自然选择的进化引导机器学习
- 批准号:
10273742 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别: