Predicting properties of biological networks from noisy and incomplete data
从嘈杂和不完整的数据预测生物网络的特性
基本信息
- 批准号:BB/E01612X/1
- 负责人:
- 金额:$ 38.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Networks aim to put interactions and dependencies among different objects (or agents) into a single coherent context. Their analysis has attracted great attention in different scientific disciplines because they offer a pictorial representation of complex phenomena, and they frequently also allow a detailed mathematical analysis of these phenomena. Unfortunately, observed networks are often very different from the true network because we cannot measure all interactions reliably. Moreover frequently only some small part of the network is considered. Both factors affect our ability to interpret network data reliably. This is especially true for many biological network datasets. The applicants group has developed a range of mathematical tools that allow us to study the effects these sources or error have on our analysis, and to overcome the limitations imposed by them to some extent. In the proposed research we will adapt these mathematical methods so that they can be applied to biological networks, in particular protein-interaction network data. This will involve the formulation of detailed models of the different experimental methods used to obtain protein interaction data. By simulating the experiment we can study the effects (and causes) of error in detail and use this to gain insights into the reliability of different datasets. With this better understanding of the effects of noise and incompleteness on experimental datasets we can then try to predict properties of the true (but partially unobserved) network. We will use this to predict the size of interaction network in different species: it is now known that the number of genes does not correlate well with our understanding of the relative complexity of different organisms (for example the number of human genes is less than twice the number of genes in the fruitfly). The statistical prediction procedures to be developed in the course of the proposed research will allow us to infer the sizes of the interaction networks in different species and will therefore enable us to see if the complexity of the network could help to explain the differences in biological complexity between different species. Finally, we will study new and more realistic models for protein interaction networks.
网络旨在将不同对象(或代理)之间的交互和依赖关系放入一个单一的连贯上下文中。他们的分析在不同的科学学科中引起了极大的关注,因为它们提供了复杂现象的图形表示,并且通常还允许对这些现象进行详细的数学分析。不幸的是,观察到的网络通常与真实网络有很大不同,因为我们无法可靠地测量所有交互。此外,通常只考虑网络的一小部分。这两个因素都会影响我们可靠地解释网络数据的能力。对于许多生物网络数据集尤其如此。申请人小组开发了一系列数学工具,使我们能够研究这些来源或误差对我们的分析的影响,并在某种程度上克服它们所施加的限制。在拟议的研究中,我们将调整这些数学方法,以便将它们应用于生物网络,特别是蛋白质相互作用网络数据。这将涉及制定用于获得蛋白质相互作用数据的不同实验方法的详细模型。通过模拟实验,我们可以详细研究错误的影响(和原因),并利用它来深入了解不同数据集的可靠性。通过更好地理解噪声和不完整性对实验数据集的影响,我们可以尝试预测真实(但部分未观察到)网络的属性。我们将用它来预测不同物种中相互作用网络的大小:现在已知基因的数量与我们对不同生物体相对复杂性的理解并没有很好的相关性(例如,人类基因的数量不到果蝇基因数量的两倍)。在拟议的研究过程中开发的统计预测程序将使我们能够推断不同物种中相互作用网络的大小,从而使我们能够了解网络的复杂性是否有助于解释不同物种之间生物复杂性的差异。最后,我们将研究蛋白质相互作用网络的新的、更现实的模型。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical inference of the time-varying structure of gene-regulation networks.
- DOI:10.1186/1752-0509-4-130
- 发表时间:2010-09-22
- 期刊:
- 影响因子:0
- 作者:Lèbre S;Becq J;Devaux F;Stumpf MP;Lelandais G
- 通讯作者:Lelandais G
The degree distribution of networks: statistical model selection.
网络的度分布:统计模型选择。
- DOI:10.1007/978-1-61779-361-5_13
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Kelly WP
- 通讯作者:Kelly WP
Generating confidence intervals on biological networks.
- DOI:10.1186/1471-2105-8-467
- 发表时间:2007-11-30
- 期刊:
- 影响因子:3
- 作者:Thorne T;Stumpf MP
- 通讯作者:Stumpf MP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Stumpf其他文献
Learning qualitative and quantitative reasoning in a microworld for elastic impacts
在微观世界中学习定性和定量推理以获得弹性影响
- DOI:
10.1007/bf03173135 - 发表时间:
1990 - 期刊:
- 影响因子:3
- 作者:
R. Ploetzner;H. Spada;Michael Stumpf;K. Opwis - 通讯作者:
K. Opwis
Closing the gap: endoscopic treatment of esophageal anastomotic leakage—a retrospective cohort study
- DOI:
10.1007/s00464-025-11904-0 - 发表时间:
2025-07-14 - 期刊:
- 影响因子:2.700
- 作者:
Myriam W. Heilani;Daniel Teubner;Thomas Haist;Mate Knabe;Patrizia Malkomes;Florian Alexander Michael;Michael Stumpf;Stefan Zeuzem;Wolf Otto Bechstein;Mireen Friedrich-Rust;Georg Dultz - 通讯作者:
Georg Dultz
Michael Stumpf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Stumpf', 18)}}的其他基金
Next generation approaches to connect models and quantitative data
连接模型和定量数据的下一代方法
- 批准号:
BB/P028306/1 - 财政年份:2018
- 资助金额:
$ 38.46万 - 项目类别:
Research Grant
Statistical modelling of in vivo immune response dynamics in zebrafish to multiple stimuli
斑马鱼对多种刺激的体内免疫反应动态的统计模型
- 批准号:
BB/K017284/1 - 财政年份:2013
- 资助金额:
$ 38.46万 - 项目类别:
Research Grant
MSc in Bioinformatics and Theoretical Systems Biology
生物信息学和理论系统生物学硕士
- 批准号:
BB/H021035/1 - 财政年份:2010
- 资助金额:
$ 38.46万 - 项目类别:
Training Grant
Development of a high-throughput quantitative immunofluorescence method and stochastic modeling of signalling networks
开发高通量定量免疫荧光方法和信号网络随机建模
- 批准号:
BB/G530268/1 - 财政年份:2009
- 资助金额:
$ 38.46万 - 项目类别:
Research Grant
Inference-based Modelling in Population and Systems Biology
群体和系统生物学中基于推理的建模
- 批准号:
BB/G007934/1 - 财政年份:2009
- 资助金额:
$ 38.46万 - 项目类别:
Research Grant
Developing methods for inferring regulatory mechanisms from intact systems: a neisseria case study
开发从完整系统推断调控机制的方法:奈瑟菌案例研究
- 批准号:
BB/G001863/1 - 财政年份:2008
- 资助金额:
$ 38.46万 - 项目类别:
Research Grant
Systems approaches to biological research training grant
生物研究培训补助金的系统方法
- 批准号:
BB/F52902X/1 - 财政年份:2008
- 资助金额:
$ 38.46万 - 项目类别:
Training Grant
A rational in-silico and experimental approach to mapping interactomes applied to Candida glabrata
一种合理的计算机模拟和实验方法来绘制应用于光滑念珠菌的相互作用组图
- 批准号:
BB/F013566/1 - 财政年份:2008
- 资助金额:
$ 38.46万 - 项目类别:
Research Grant
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
- 批准号:
10637323 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Identifying mechanisms underlying sex differences in motoneuron discharge
识别运动神经元放电性别差异的机制
- 批准号:
10751793 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Biophysical Mechanisms of Cortical MicroStimulation
皮质微刺激的生物物理机制
- 批准号:
10711723 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别: