A novel and rapid approach to predict protein structure
预测蛋白质结构的新颖且快速的方法
基本信息
- 批准号:BB/G003912/1
- 负责人:
- 金额:$ 41.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IMPORTANCE OF KNOWLEDGE ABOUT PROTEIN STRUCTURE Proteins are molecular machines which carry out most of the basic functions of an organism. They are made of chains of smaller molecules called amino acids. There are twenty types of amino acid, and the precise sequence of amino acids determines the shape and function of the protein. A protein is a large molecule, and in water it folds into a globular structure. The amino acids interact with each other in specific ways. It is important for us to know the shape of a protein as this provides insight into its function and can help in the design of experiments. Knowledge of the structure of a protein can be the starting point for the systematic design of novel regulators of activity such as drugs and agricultural agents. PROTEIN STRUCTURE PREDICTION It is slow, expensive and difficult to find out the structure of a protein directly. However, we now have the DNA sequences for many important organisms, including humans, and we generally can get protein sequences from DNA sequences. We know that the structure of a protein depends entirely on the sequence of its amino acids. Thus we can try to predict the structure of a protein from its sequence. Many successful prediction methods use similarities between the sequence for an unknown structure and the sequence for a known structure - . known as template-based modelling, But what if no such similarity can be found? There are two main methods that are yielding useful predictions today. One, fragment folding, tries to make a structure out of little fragments of other structures. This has been the most successful of the template-free methods in the last few years and has about 50% success rate. It requires high performance computing (up to years of cpu time per prediction). Another method, molecular dynamics, simulates the interactions between the atoms in the protein. Although this approach has provided useful predictions for the very smallest of proteins, it requires a computation time of many years on a single processor. OUR APPROACH We have developed with a new method, called poing, which aims to solve some of the problems with these other methods. We base our approach on a highly simplified model, introduced in the mid 70s, representing the protein as a ball-and-spring model. Each amino acid is represented by just two balls, less than a tenth the number that is used in molecular dynamics. This makes poing very fast. The springs between the balls are modelled using heuristics to represent specific effects which are known to be important in how a protein folds. Our preliminary results show that our approach can yield useful predictions with a run time of 20 hours on a single cpu. THIS PROPOSAL We propose to develop the new model to make it more accurate at predicting structures. We will also take part in a regular protein structure prediction experiment, where different prediction methods are tested on new proteins, and then compared with each other. We will also make our software available to the community via a public web server and by allowing others freely to obtain copies of it to change and run on their own computers. All this work will take three years.
蛋白质是执行生物体大部分基本功能的分子机器。它们是由被称为氨基酸的小分子链组成的。氨基酸有20种,氨基酸的精确序列决定了蛋白质的形状和功能。蛋白质是一种大分子,在水中它会折叠成球状结构。氨基酸以特定的方式相互作用。对我们来说,了解蛋白质的形状是很重要的,因为这可以让我们了解它的功能,并有助于实验的设计。对蛋白质结构的了解可以作为系统设计新的活性调节剂(如药物和农业制剂)的起点。蛋白质结构预测直接发现蛋白质的结构是缓慢、昂贵和困难的。然而,我们现在有了包括人类在内的许多重要生物的DNA序列,而且我们通常可以从DNA序列中得到蛋白质序列。我们知道蛋白质的结构完全取决于它的氨基酸序列。因此,我们可以尝试从蛋白质的序列来预测其结构。许多成功的预测方法利用未知结构序列和已知结构序列之间的相似性。即基于模板的建模,但如果找不到这种相似性怎么办?目前有两种主要的预测方法可以产生有用的预测结果。一种是片段折叠,试图用其他结构的小片段组成一个结构。这是近年来最成功的无模板方法,成功率约为50%。它需要高性能计算(每次预测需要长达数年的cpu时间)。另一种方法是分子动力学,它模拟蛋白质中原子之间的相互作用。尽管这种方法为最小的蛋白质提供了有用的预测,但它需要在单个处理器上花费多年的计算时间。我们的方法我们开发了一种叫做poing的新方法,它旨在解决其他方法存在的一些问题。我们的方法基于一个高度简化的模型,该模型于70年代中期引入,将蛋白质表示为球-弹簧模型。每个氨基酸只有两个球,不到分子动力学中所用球数的十分之一。这使得乒乓球非常快。球之间的弹簧使用启发式建模,以表示已知对蛋白质折叠方式很重要的特定效应。我们的初步结果表明,我们的方法可以在单个cpu上运行20小时的情况下产生有用的预测。我们建议发展新模型,使其在预测结构时更加准确。我们还会定期参加蛋白质结构预测实验,在新的蛋白质上测试不同的预测方法,然后相互比较。我们还将通过公共网络服务器向社区提供我们的软件,并允许其他人自由地获得它的副本,以便在他们自己的计算机上进行修改和运行。所有这些工作将花费三年时间。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protein folding requires crowd control in a simulated cell.
- DOI:10.1016/j.jmb.2010.01.074
- 发表时间:2010-04-16
- 期刊:
- 影响因子:5.6
- 作者:Jefferys BR;Kelley LA;Sternberg MJ
- 通讯作者:Sternberg MJ
XperimentR: painless annotation of a biological experiment for the laboratory scientist.
- DOI:10.1186/1471-2105-14-8
- 发表时间:2013-01-16
- 期刊:
- 影响因子:3
- 作者:Tomlinson CD;Barton GR;Woodbridge M;Butcher SA
- 通讯作者:Butcher SA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Sternberg其他文献
Can we promote children’s openness towards the other group in violent conflict? The story of Jewish and Arab kindergarten teachers in Israel
我们能否促进儿童在暴力冲突中对其他群体持开放态度?以色列犹太和阿拉伯幼儿园教师的故事
- DOI:
10.1080/14675986.2022.2090782 - 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Afnan Masarwah Srour;Talee Ziv;Samar Aldinah;Mahmud Dawud;Michael Sternberg;S. Sagy - 通讯作者:
S. Sagy
TCT-339 Impact of Tricuspid Regurgitation on Thermodilution for Measurement of Cardiac Index
- DOI:
10.1016/j.jacc.2021.09.1192 - 发表时间:
2021-11-09 - 期刊:
- 影响因子:
- 作者:
Michael Sternberg;Joseph Nicolazzi;Murti Patel;Jonathan Saado;Sara Kwiatkowski;Royce Kim;Hem Bhardwaj;Zachary Gertz - 通讯作者:
Zachary Gertz
Subtractive hybridization techniques to study cellular senescence.
研究细胞衰老的消减杂交技术。
- DOI:
10.1007/978-1-59745-361-5_21 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Michael Sternberg;S. Gepstein - 通讯作者:
S. Gepstein
Jewish and Arab kindergarten teachers cope with the challenges of encountering the other in Israel: ‘My Diverse Kindergarten’
犹太和阿拉伯幼儿园教师应对在以色列遇到对方的挑战:“我的多元化幼儿园”
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.4
- 作者:
Afnan Masarwah Srour;Michael Sternberg;Samar Aldinah;Talee Ziv;Mahmud Dawud;S. Sagy - 通讯作者:
S. Sagy
Using cultural algorithms to support re-engineering of rule-based expert systems in dynamic performance environments: a case study in fraud detection
使用文化算法支持动态性能环境中基于规则的专家系统的重新设计:欺诈检测的案例研究
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:14.3
- 作者:
Michael Sternberg;R. Reynolds - 通讯作者:
R. Reynolds
Michael Sternberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Sternberg', 18)}}的其他基金
21-BBSRC/NSF-BIO: Modeling of protein interactions to predict phenotypic effects of genetic mutations
21-BBSRC/NSF-BIO:蛋白质相互作用建模以预测基因突变的表型效应
- 批准号:
BB/X01830X/1 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
Enhancing the Phyre protein modelling resource: prediction of ligand binding and the impact of missense variants
增强 Phyre 蛋白质建模资源:配体结合的预测和错义变体的影响
- 批准号:
BB/V018558/1 - 财政年份:2022
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
18-BBSRC-NSF/BIO - Structural modeling of interactome to assess phenotypic effects of genetic variation
18-BBSRC-NSF/BIO - 相互作用组的结构建模以评估遗传变异的表型效应
- 批准号:
BB/T010487/1 - 财政年份:2020
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
FunPDBe - Community driven enrichment of PDB data with structural and functional annotations
FunPDBe - 社区驱动的 PDB 数据丰富与结构和功能注释
- 批准号:
BB/P023959/1 - 财政年份:2019
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
Development and marketing of protein docking games for the educational sector
教育领域蛋白质对接游戏的开发和营销
- 批准号:
BB/R01955X/1 - 财政年份:2018
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
EzMol and BioBlox: Assessing the commercial opportunities and societal benefits of protein modelling resources in industry, schools and museums
EzMol 和 BioBlox:评估工业、学校和博物馆中蛋白质建模资源的商业机会和社会效益
- 批准号:
BB/R005958/1 - 财政年份:2017
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
Modeling protein interactions to interpret genetic variation
模拟蛋白质相互作用以解释遗传变异
- 批准号:
BB/P011705/1 - 财政年份:2016
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
Enhancing the Phyre2 protein modelling portal for the community
增强社区的 Phyre2 蛋白质建模门户
- 批准号:
BB/M011526/1 - 财政年份:2015
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
DockIt: Development and launch of a crowd-sourced serious-games platform for protein docking for use by the public and the scientific community.
DockIt:开发并推出一个众包严肃游戏平台,用于蛋白质对接,供公众和科学界使用。
- 批准号:
BB/L005247/1 - 财政年份:2013
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
Maintaining and extending PHYRE2 to deliver an internationally-recognised resource for protein model
维护和扩展 PHYRE2 以提供国际认可的蛋白质模型资源
- 批准号:
BB/J019240/1 - 财政年份:2012
- 资助金额:
$ 41.06万 - 项目类别:
Research Grant
相似国自然基金
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
颅骨缺损修补新材料的表面改性研究及个体化快速三维成型
- 批准号:30500520
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Chemical Genetic Dissection of SWI/SNF Chromatin Remodeling Complex Functions in Cerebral Cortex Development
大脑皮层发育中 SWI/SNF 染色质重塑复杂功能的化学遗传学解析
- 批准号:
10660367 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Enhanced Deuterium Metabolic Imaging (DMI) of Metabolic Reprogramming in Brain Tumors
脑肿瘤代谢重编程的增强氘代谢成像 (DMI)
- 批准号:
10593853 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
- 批准号:
10677450 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
GigaFIBI; rapid, large-format histology-resolution imaging for Intraoperative assessment of breast lumpectomy margins
千兆FIBI;
- 批准号:
10568823 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Identifying mechanisms of maternal-infant obesity risk transmission: The role of appetite, sleep, and circadian rhythms
确定母婴肥胖风险传播的机制:食欲、睡眠和昼夜节律的作用
- 批准号:
10711067 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:














{{item.name}}会员




